
Lua Scripting 5.1 Cheat Sheet
by SrGMC via cheatography.com/62984/cs/16090/

Types

number

string

boolean

table

function

userdata

thread

nil

Variable type can be obtained with
type (va ria ble)
Note: Table index starts at 0, but can be
extended to 0 or negative numbers

Arithmetic Expres sions

Sum +

Negati on/ Sub tra ction -

Product *

Division /

Modulo %

Power ^

Relational Expres sions

Equal to ==

Not equal to ~=

Less than <

Greater than >

Less than or equal to <=

Greater than or equal to >=

Logical Operators

not

and

or

Even though Lua does not have a Ternary
operator (condition ? truevalue : falsev alue), we
can use and and or to achieve a similar effect:
value = (condition and truevalue)

or falsev alue
In this case and returns truevalue when the
condition is true and falsevalue otherwise

Tables

Tables are used with the table[key] syntax
Example:
> t = {foo="b ar"} -- Same as t={["fo o"]= " bar "}
> t.foo
bar
They can also be used as arrays
a = {1, 2, 3}
But in this case, index starts at 1
a = {[0]=1, [1]=2}
Tables can be extended to index 0 or even
negative numbers
Table size can be found with:
> a = {1, 2, 3}
> # a
3

Functions and modules

Func tions
value = func tio n (a rgs) body end
func tion functi onN ame (a rgs) body end
Functions can be used as arguments:
func tion f(f2, arg1) f2(arg1) end
Return skips other code below it
Modu les
A common module declar ation usually is:
local mymodule = {}
func tion mymodu le.f oo() prin t ("b ar") end
return mymodule
As tables can have functions assigned to a
key.
To import it, just do:
> module = requir e("m ymo dul e")
> module.foo()
bar
Also, you can make private functions by putting
local in front of the function declar ation.

Math Library

math.a bs(number)

math.a cos (ra dians), math.a sin (ra dians),
math.a tan (ra dians)

math.c eil (nu mber), math.f loo r(n umber)

Math Library (cont)

math.c os(rad ians), math.s in(rad ians),
math.t an(rad ians)

math.d eg(rad ians), math.r ad(deg rees)

math.e xp(num ber), math.l og(number)

math.m in(num1, num2, ...), math.m ax(num1,
num2, ...)

math.s qrt (nu mber)

math.r and om(), math.r and om(upper),
math.r and om(lower, upper)

math.r and oms eed (seed)

math.huge --rep resents infinity

math.pi

On trigon ometric calcul ations, the number is
expressed as radians.
On math.r andom() lower and upper are
inclusive.
math.huge can be also repres ented with -
math.huge

Control Structures

if/else statem ent
if (condi tion1) then
block
elseif (condi tion2) then
block
else
block
end
while loop
while (condi tion) do
block
end
repeat loop

repeat
block
until (condi tion)
Numeric for loop
for variable = start, stop, step do
block
end
Iterator for loop
for var1, var2, var3 in iterator do
block

By SrGMC
cheatography.com/srgmc/

Published 13th June, 2018.
Last updated 13th June, 2018.
Page 1 of 3.

Sponsored by ApolloPad.com
Everyone has a novel in them. Finish Yours!
https://apollopad.com

Like while loop, but condition is inverted

http://www.cheatography.com/
http://www.cheatography.com/srgmc/
http://www.cheatography.com/srgmc/cheat-sheets/lua-scripting-5-1
http://www.cheatography.com/srgmc/
https://apollopad.com

Lua Scripting 5.1 Cheat Sheet
by SrGMC via cheatography.com/62984/cs/16090/

Control Structures (cont)

end

Table Library

table.c
on cat (t‐
able [,
sep [, i
[, j]]])

Concat enate the elements of a table
to form a string. Each element must
be able to be coerced into a string.

table.f o
r eac h(t
able, f)

Apply the function f to the elements of
the table passed. On each iteration
the function f is passed the key-value
pair of that element in the table. Apply
the function f to the elements of the
table passed. On each iteration the
function f is passed the key-value pair
of that element in the table.
Depre cated

table.f o
r eac hi(
table,
f)

Apply the function f to the elements of
the table passed. On each iteration
the function f is passed the
index- value pair of that element in the
table. This is similar to
table.f or each() except that
index- value pairs are passed, not key-
value pairs. Depre cated

Table Library (cont)

table.s
or t(tabl‐
e [,
comp])

Sort the elements of a table in-place.
A comparison function can be
provided to customise the element
sorting. The comparison function
must return a boolean value
specifying whether the first argument
should be before the second
argument in the sequence.

table.i n
s ert (ta
ble,
[pos,]
value)

Insert a given value into a table. If a
position is given insert the value
before the element currently at that
position.

table.r
em ove ‐
(table
[, pos])

Remove an element from a table. If a
position is specified the element at
that the position is removed. The
remaining elements are reindexed
sequen tially and the size of the table
is updated to reflect the change. The
element removed is returned by this
function.

tabl e.s ort() example:
> t = { 3,2,5,1,4 }
> table.s ort(t, functi on(a,b) return a<b end)
> = table.c on cat(t, ", ")
1, 2, 3, 4, 5

String

string.byte(s
[, i [, j]])

Return the numerical code the i-
th through j-th character of the
string passed.

string.ch ar(i
1, i2, ...)

Generate a string repres enting
the character numerical code
passed as arguments.

string.fi nd(s,
pattern [,
index [,
plain]])

Find the first occurrence of the
pattern in the string passed

string.fo rmat
(s, e1, e2,
...)

Create a formatted string from
the format and arguments
provided. This is similar to the
printf ("fo rma t",...) function in C.

string.gs ub(
s, pattern,
replace [,
n])

Used simply it can replace all
instances of the pattern
provided with the replac ement.
A pair of values is returned, the
modified string and the number
of substi tutions made. The
optional fourth argument n can
be used to limit the number of
substi tutions made

string.len(s) Return the length of the string
passed.

string.lo wer(
s)

Make all the upper case
characters lower case.

string.up per(
s)

Make all the lower case
characters upper case.

By SrGMC
cheatography.com/srgmc/

Published 13th June, 2018.
Last updated 13th June, 2018.
Page 2 of 3.

Sponsored by ApolloPad.com
Everyone has a novel in them. Finish Yours!
https://apollopad.com

http://www.cheatography.com/
http://www.cheatography.com/srgmc/
http://www.cheatography.com/srgmc/cheat-sheets/lua-scripting-5-1
http://www.cheatography.com/srgmc/
https://apollopad.com

Lua Scripting 5.1 Cheat Sheet
by SrGMC via cheatography.com/62984/cs/16090/

String (cont)

string.match
(s, pattern [,
index])

Extract substrings by matching
patterns.

string.rep(s,
n)

Generate a string which is n
copies of the string passed
concat enated together.

string.re ver s
e(s)

Reverses a string.

string.sub(s,
i [, j])

Return a substring of the string
passed. The substring starts at i.
If the third argument j is not
given, the substring will end at
the end of the string. If the third
argument is given, the substring
ends at and includes j.

All functions can be used directly in string by
changing string. to s:, s being the string
Example:
strin g.r eve rse ("Te st")
"Te st": rev ers e() "

Classes. Table based

local Person = {}

Person.__ index = Person
function Person.ne w(name, surname)
 local self = setmet ata ble({},
Person)

 sel f.name = name
 sel f.s urname = surname
 return self
end

function Person.se tNa me(self, name)
 sel f.name = name
end

function Person.ge tNa me(self)
 return self.name
end

function Person.se tSu rna me(self,
surname)

 sel f.s urname = surname
end

function Person.ge tSu rna me(self)

Classes. Table based (cont)

 return self.s urname
end

return Person

-- Import with ClassName =

requir e("c las sna me")
-- Use with local i =

ClassN ame.in it(params)

Faster to create. Does not have private
attributes

Classes. Closur e/I nstance Based

local function MyClass(init)

 local self = {
 pub lic _field = 0
 }
 local privat e_field = init
 fun ction self.foo()
 return privat e_field
 end
 fun ction self.bar()
 pri vat e_field =
privat e_field + 1
 end
 return self
end

return MyClass

-- Import with MyClass =

requir e("M yCl ass ")
-- Use with local i =

MyClas s(init)

Can have private attrib utes. Slower to create

By SrGMC
cheatography.com/srgmc/

Published 13th June, 2018.
Last updated 13th June, 2018.
Page 3 of 3.

Sponsored by ApolloPad.com
Everyone has a novel in them. Finish Yours!
https://apollopad.com

http://www.cheatography.com/
http://www.cheatography.com/srgmc/
http://www.cheatography.com/srgmc/cheat-sheets/lua-scripting-5-1
http://www.cheatography.com/srgmc/
https://apollopad.com

	Lua Scripting 5.1 Cheat Sheet - Page 1
	Types
	Tables
	Arithmetic Expressions
	Functions and modules
	Control Structures
	Relational Expressions
	Logical Operators
	Math Library

	Lua Scripting 5.1 Cheat Sheet - Page 2
	String
	Table Library

	Lua Scripting 5.1 Cheat Sheet - Page 3
	Classes. Closure/Instance Based
	Classes. Table based

