
NLP Cheat Sheet
by sree017 via cheatography.com/126402/cs/24446/

Tokeni zation

Tokenization breaks the

raw text into words,

sentences called tokens.

These tokens help in

understanding the

context or developing

the model for the NLP.

... If the text is split

into words using some

separation technique it

is called word

tokenization and same

separation done for

sentences is called

sentence tokenization.

# NLTK

import nltk

nltk.d own loa d(' punkt')
paragraph = " write
paragaraph here to

convert into tokens."

sentences = nltk.s ent ‐
_to ken ize (pa rag raph)
words = nltk.w ord _to ken ‐
ize (pa rag raph)
# Spacy

from spacy.l ang.en
import English

nlp = English()

sbd = nlp.cr eat e_p ipe ‐
('s ent enc izer')
nlp.ad d_p ipe (sbd)
doc = nlp(pa rag raph)
[sent for sent in

doc.sents]

nlp = English()

doc = nlp(pa rag raph)

 

Tokeni zation (cont)

[word for word in doc]

# Keras

from keras.p re pro ces sin ‐
g.text import text_t o_w ‐
ord _se quence
text_t o_w ord _se que nce ‐
(pa rag raph)
# genis

from gensim.su mma riz ati ‐
on.t ex tcl eaner import
split_ sen tences
split_ sen ten ces (pa rag ‐
raph)

from gensim.utils import

tokenize

list(t oke niz e(p ara ‐
graph))

Bag Of Words & TF-IDF

Bag of Words model is

used to preprocess the

text by converting it

into a bag of words,

which keeps a count of

the total occurrences of

most frequently used

words

# counters = List of

stences after pre

processing like tokeni ‐
zation, stemmi ng/ lem mat ‐
iza tion, stopwords
from sklear n.f eat ure _ex ‐
tra cti on.text import
CountV ect orizer
cv = CountV ect ori zer (ma ‐
x_f eatures = 1500)

 

Bag Of Words & TF-IDF (cont)

X = cv.fit _tr ans for m(c ‐
oun ter s).t oa rray()
Term Freque ncy -In verse
Document Frequency (TF-

IDF):

      Term freque ncy –in ‐
verse document

frequency, is a

numerical statistic that

is intended to reflect

how important a word is

to a document in a

collection or corpus.

   T.F = No of rep of
words in setence/No of

words in sentence

   IDF = No of sentences
/ No of sentences

containing words

from sklear n.f eat ure _ex ‐
tra cti on.text import
TfidfV ect orizer
cv = TfidfV ect ori zer()
X = cv.fit _tr ans for m(c ‐
oun ter s).t oa rray()
N-gram Language Model:

An N-gram is a sequence

of N tokens (or words).

A 1-gram (or unigram) is

a one-word sequen ce.the
unigrams would simply

be: “I”, “love”,

“reading”, “blogs”,

“about”, “data”,

“science”, “on”, “Analy ‐
tics”, “Vidhya”.

 

Bag Of Words & TF-IDF (cont)

A 2-gram (or bigram) is

a two-word sequence of

words, like “I love”,

“love reading”, or

“Analytics Vidhya”.

 And a 3-gram (or

trigram) is a three-word

sequence of words like

“I love reading”, “about

data science” or “on

Analytics Vidhya”.

Stemming & Lemmat ization

From Stemming we will

process of getting the

root form of a word. We

would create the stem

words by removing the

prefix of suffix of a

word. So, stemming a

word may not result in

actual words.

paragraph = " "
# NLTK

from nltk.stem import

Porter Stemmer
from nltk import sent_t ‐
okenize

from nltk import word_t ‐
okenize

stem = Porter Ste mmer()
sentence = sent_t oke niz ‐
e(p ara gra ph)[1]
words = word_t oke niz e(s ‐
ent ence)
[stem.s te m(word) for
word in words]

# Spacy

By sree017
cheatography.com/sree017/  

Published 26th September, 2020.
Last updated 26th September, 2020.
Page 1 of 3.

 
Sponsored by CrosswordCheats.com
Learn to solve cryptic crosswords!
http://crosswordcheats.com

http://www.cheatography.com/
http://www.cheatography.com/sree017/
http://www.cheatography.com/sree017/cheat-sheets/nlp
http://www.cheatography.com/sree017/
http://crosswordcheats.com


NLP Cheat Sheet
by sree017 via cheatography.com/126402/cs/24446/

Stemming & Lemmat ization
(cont)

No Stemming in spacy

# Keras

No Stemming in Keras

Lemmat iza tion:
As stemming, lemmat ‐
ization do the same

but the only

difference is that

lemmat ization ensures
that root word belongs

to the language

# NLTK

from nltk.stem import

WordNe tLe mma tizer
lemma = WordNe tLe mma ‐
tizer()

sentence = sent_t oke ‐
niz e(p ara gra ph)[1]
words = word_t oke niz ‐
e(s ent ence)
[lemma.le mma tiz e(word)
for word in words]

# Spcay

import spacy as spac

sp = spac.l oad ('e n_c ‐
ore _we b_sm')
ch = sp(u'w arning
warned')

for x in ch:

    pri nt( ch.l emma_)
# Keras

No lemmat ization or
stemming

 

Word2Vec

In BOW and TF-IDF

approach semantic

information not stored.

TF-IDF gives

importance to uncommon

words. There is

definitely chance of

overfitting.

 In W2v each word is

basically repres ented
as a vector of 32 or

more dimension instead

of a single number.

Here the semantic

inform ation and
relation between words

is also preserved.

Steps:

1. Tokeni zation of the
sentences

2. Create Histograms

3. Take most frequent

words

4. Create a matrix with

all the unique words.

It also represents the

occurence relation

between the words

from gensim.models

import Word2Vec

model = Word2V ec( sen ‐
tences, min_co unt=1)
words = model.w v.v ocab
vector = model.w v[ 'fr ‐
eedom']

similar = model.w v.m os ‐
t_s imi lar ['f ree dom']

 

Stop Words

Stopwords are the most

common words in any

natural language. For

the purpose of

analyzing text data and

building NLP models,

these stopwords might

not add much value to

the meaning of the

document.

# NLTK

from nltk.c orpus import
stopwords

from nltk.t okenize
import word_t okenize
stopwords = set(st opw ‐
ord s.w ord s(' eng lish'))
word_t okens = word_t ‐
oke niz e(p ara graph)
[word for word in

word_t okens if word not
in stopwords]

# Spacy

from spacy.l ang.en
import English

from spacy.l an g.e n.s ‐
top _words import
STOP_WORDS

nlp = English()

my_doc = nlp(pa rag raph)
# Create list of word

tokens

token_list =

[token.text for token

in my_doc]

# Create list of word

tokens after removing

stopwords

filter ed_ sen tence =[]

 

Stop Words (cont)

for word in token_ list:
    lexeme = nlp.vo cab ‐
[word]

    if lexeme.is _stop ==
False:

        fil ter ed_ sen ten ‐
ce.a pp end (word)
# Gensim

from gensim.pa rsi ng.p re pro ‐
cessing import remove _st ‐
opwords

remove _st opw ord s(p ara graph)

Tokeni zation

NLTK Spacy Keras Tensorlfow

dfdfd

Parts of Speech (POS) Tagging,
Chunking & NER

The pos(parts of speech)

explain you how a word is

used in a sentence. In the

sentence, a word have

different contexts and

semantic meanings. The

basic natural language

processing(NLP) models like

bag-of-words(bow) fails to

identify these relation

between the words. For that

we use pos tagging to mark a

word to its pos tag based on

its context in the data.

Pos is also used to extract

rlationship between the

words

# NLTK

By sree017
cheatography.com/sree017/  

Published 26th September, 2020.
Last updated 26th September, 2020.
Page 2 of 3.

 
Sponsored by CrosswordCheats.com
Learn to solve cryptic crosswords!
http://crosswordcheats.com

http://www.cheatography.com/
http://www.cheatography.com/sree017/
http://www.cheatography.com/sree017/cheat-sheets/nlp
http://www.cheatography.com/sree017/
http://crosswordcheats.com


NLP Cheat Sheet
by sree017 via cheatography.com/126402/cs/24446/

Parts of Speech (POS) Tagging,
Chunking & NER (cont)

from nltk.t okenize import
word_t okenize
from nltk import pos_tag

nltk.d own loa d(' ave rag ed_ ‐
per cep tro n_t agger')
word_t okens = word_t oke ‐
niz e('Are you afraid of
someth ing?')
pos_ta g(w ord _to kens)
# Spacy

nlp = spacy.l oa d("e n_c ‐
ore _we b_s m")
doc = nlp("Co ron avirus:
Delhi resident tests

positive for corona virus,
total 31 people infected

in India")

[token.pos_ for token in

doc]

Chunking:

Chunking is the process

of extracting phrases

from the Unstru ctured
text and give them more

structure to it. We also

called them shallow

parsing.We can do it on

top of pos tagging. It

groups words into chunks

mainly for noun phrases.

chunking we do by using

regular expres sion.
# NLTK

word_t okens = word_t oke ‐
niz e(text)

 

Parts of Speech (POS) Tagging,
Chunking & NER (cont)

word_pos = pos_ta g(w ord ‐
_to kens)
chunkP arser = nltk.R ege ‐
xpP ars er( gra mmar)
tree = chunkP ars er.p ar ‐
se( wor d_pos)
Named Entity Recogn iza ‐
tion:

It is used to extract

inform ation from unstru ‐
ctured text. It is used

to classy the entities

which is present in the

text into categories like

a person, organi zation,
event, places, etc. This

will give you a detail

knowledge about the text

and the relati onship
between the different

entities.

# Spacy

import spacy

nlp = spacy.l oa d("e n_c ‐
ore _we b_s m")
doc = nlp("Co ron avirus:
Delhi resident tests

positive for corona virus,
total 31 people infected

in India")

for ent in doc.ents:

    pri nt( ent.text,
ent.st art _char, ent.en ‐
d_char, ent.la bel_)

  

By sree017
cheatography.com/sree017/  

Published 26th September, 2020.
Last updated 26th September, 2020.
Page 3 of 3.

 
Sponsored by CrosswordCheats.com
Learn to solve cryptic crosswords!
http://crosswordcheats.com

http://www.cheatography.com/
http://www.cheatography.com/sree017/
http://www.cheatography.com/sree017/cheat-sheets/nlp
http://www.cheatography.com/sree017/
http://crosswordcheats.com

	NLP Cheat Sheet - Page 1
	Tokenization
	Stemming & Lemmatization
	Bag Of Words & TF-IDF

	NLP Cheat Sheet - Page 2
	Word2Vec
	Stop Words
	Tokenization
	Parts of Speech (POS) Tagging, Chunking & NER

	NLP Cheat Sheet - Page 3

