Cheatography

Linear Algebra Cheat Sheet

by spoopyy via cheatography.com/28376/cs/8341/

Diagonalizable Matrices
A is diagonalizable when A is
similar to a diagonal matrix.
That is, A is diagonalizable when
there exists an invertible matrix P
such that $\mathrm{P}^{-1} \mathrm{AP}$ is a diagonal
matrix

Dot Products Etc.

length/norm $\|v\|=$ sqrt(v_12 ${ }^{2}+\ldots+$ v_n²
$\|\mathrm{cv}\|=|\mathrm{c}| \mid \mathrm{v} \|$
$\mathrm{v} /\|\mathrm{v}\|$ is the unit vector
distance $\mathrm{d}(u, v)=\|u-v\|$
Dot product u*v = (u_1v_1 +...+
u_nv_n)
$\mathrm{n} \cos ($ theta $)=u \cdot v /(||u||| | v| |)$
$u \& v$ are orthagonal when $\operatorname{dot}(u, v)=$
0

Eigenshit
The scalar lambda(Y$)$ is called an
Eigenvalue of A when there is a nonzero vector x such that $\mathrm{Ax}=$ Yx.

Vector x is an Eigenvector of A corresponding to Y .

The set of all eigenvectors with the zero vector is a subspace of R^{n} called the Eigenspace of Y .

1. Find Eigenvalues: $\operatorname{det}(\mathrm{YI}-\mathrm{A})=0$
2. Find Eigenvectors: $(\mathrm{YI}-\mathrm{A}) \mathrm{x}=0$

If A is a triangular matrix then its eigenvalues are on its main diagonal

Gram-Schmidt Orthonormalization
1. $B=\{v 1, v 2, \ldots, v n\}$
2. $B^{\prime}=\{w 1, w 2, \ldots, w n\}$:
$\mathrm{w} 1=\mathrm{v} 1$
w2 = v2 - projw1v2
w3 = v3- projw1v3 - projw2v3
wn = vn-...
3. $B^{\prime \prime}=\{u 1, u 2, \ldots, u n\}:$
$u i=w i /\| \| w i \\|$
B " is an orthonormal basis for V
$\operatorname{span}(\mathrm{B})=\operatorname{span}\left(\mathrm{B}^{\prime \prime}\right)$

$\mathrm{C}[\mathrm{a}, \mathrm{b}]$
P
P_n
M_m,n

Inner Products
$\\|u\\|=s q r t<u, u\rangle$
$d(u, v)=\\|u-v\\|$
$\cos ($ theta) $=\langle u, v\rangle /(\|\|u\|\|\| \| v\| \|)$
$u \& v$ are orthagonal when $\langle u, v\rangle=0$
proj_vu $=\langle u, v\rangle /\langle v, v\rangle * v$

Kernal

For $\mathrm{T}: \mathrm{V}->\mathrm{W}$ The set of all vectors v in V that satisfies $T(v)=0$ is the kernal of T . $\operatorname{ker}(\mathrm{T})$ is a subspace of v.

For $\mathrm{T}: \mathrm{R}^{\mathrm{n}} \rightarrow \mathrm{R}^{\mathrm{m}}$ by $\mathrm{T}(\mathrm{x})=\mathrm{Ax} \operatorname{ker}(\mathrm{T})=$ solution space of $A x=0$ \&
Cspace(A) $=\operatorname{range}(\mathrm{T})$

Linear Independence
a set of vectors S is Ll if $\mathrm{c} 1 \mathrm{v} 1+\ldots+$ ckvk $=0$ has only the trivial solution.
If there are other solutions S is LD.
A set S is Ll iff one of its vectors can
be written as a combo of other S vectors.

Linear Transformation

V \& W are V spaces. $\mathrm{T}: \mathrm{V}->\mathrm{W}$ is a linear transformation of V into W if:

1. $T(u+v)=T(u)=T(v)$
2. $T(c u)=c T(u)$

Non-Homogeny

If xp is a solution to $\mathrm{Ax}=\mathrm{b}$ then every solution to the system can be written as $\mathrm{x}=\mathrm{xp}$
Nullity
Nullspace(A) $=\left\{x \in R^{n}: A x=0\right.$
Nullity $(A)=\operatorname{dim}(\operatorname{Nullspace}(A))$
$=n-\operatorname{rank}(A)$

Orthogonal Sets

Set S in V is orthogonal when every pair of vectors in S is orthogonal. If each vector is a unit vector, then S is orthonormal

By spoopyy

cheatography.com/spoopyy/

Published 4th June, 2016.
Last updated 4th June, 2016.
Page 1 of 2.

Sponsored by Readability-Score.com
Measure your website readability!
https://readability-score.com

```
One-to-One and Onto
T is one-to-one iff ker(T) = {0}
T is onto iff rank(T) = dim(W)
If dim(T) = dim(W) then T is one-to-one iff it is onto
Rank and Nullity of T
nullity (T) = dim(kernal)
rank(T) = dim(range)
range(T) + nullity (T) = n(in m_x n)
dim(domain) = dim(range) + dim(kernal)
Rank of a Matrix
\(\operatorname{Rank}(\mathrm{A})=\operatorname{dim}(\) Rspace \()=\operatorname{dim}(\) Cspace \()\)
Similar Matrices
For square matrices \(A\) and \(A^{\prime}\) of order \(n, A^{\prime}\) is similar to \(A\) when there exits an invertible matrix \(P\) such that \(A^{\prime}=P^{-1} A P\)
Spanning Sets
\(\mathrm{S}=\{\mathrm{v} 1 . . \mathrm{vk}\}\) is a subset of vector space V . S spans V if every vector in v can be written as a linear combo of vectors in S .
```


Test for Subspace

```
1. \(u+v\) are in \(W\)
2. \(c u\) is in \(w\)
```


By spoopyy

cheatography.com/spoopyy/

Published 4th June, 2016.
Last updated 4th June, 2016.
Page 2 of 2.

Sponsored by Readability-Score.com
Measure your website readability!
https://readability-score.com

