Cheatography

Linear Algebra Cheat Sheet by spoopyy via cheatography.com/28376/cs/8341/

Basis

A set S is a basis for V if

1. S spans V

2. S is LI.

If S is a basis for V then every vector in V can be written in one and only one way as a linear combo of vectors in S and every set containing more than n vectors is LD.

Basis Test

1. If S is a LI set of vectors in V, then S is a basis for V

2. If S spans V, then S is a basis for V

Change of Basis

P[x]_B' = [x]_B
[x]_B' = P ⁻¹ [x]_B
[B B'] -> [I P ⁻¹]
[B' B] -> [I P]

Cross Product

if u = u1i + u2j + u3k

AND

v = v1i + v2j + v3k

THEN

u x v = (u2v3 - u3v2)i - (u1v3 u3v1)j + (u1v2 - u2v1)k

Definition of a Vector Space u + v is within V

u+v = v+u

- u+(v+w) = (u+v)+w
- u+0 = u

u-u = 0

cu is within V

c(u+v) = cu+cv

(c+d)u = cu+du

c(du) = (cd)u

1*u = u

matrix	
Dot Products Etc.	
length/norm v = sqrt(v_1 ² ++ v_n^2	
cv = c v	
v / v is the unit vector	
distance d(u,v) = u-v	
Dot product u•v = (u_1v_1 ++ u_nv_n)	
n cos(theta) = u•v / (u v)	_
u&v are orthagonal when dot(u,v) = 0	
Eigenshit	
The scalar lambda(Y) is called	
an Eigenvalue of A when there is	
a nonzero vector x such that Ax	
= YX.	
Vector x is an Eigenvector of A corresponding to Y.	
The set of all eigenvectors with	
the zero vector is a subspace of	
R [®] called the Eigenspace of Y.	
1. Find Eigenvalues: det(YI - A)	

Diagonalizable Matrices

A is diagonalizable when A is

That is, A is diagonalizable when

there exists an invertible matrix

P such that P⁻¹AP is a diagonal

similar to a diagonal matrix.

2. Find Eigenvectors: (YI - A)x = 0

If A is a triangular matrix then its eigenvalues are on its main diagonal

2. B' = {w1, w2, ..., wn}:

w1 = v1w2 = v2 - projw1v2w3 = v3 - projw1v3 - projw2v3wn = vn - ...

3. B" = {u1, u2, ..., un}:

ui = wi/||wi||

B" is an orthonormal basis for V span(B) = span(B")

Important Vector Spaces Rⁿ C(-inf, +inf) C[a, b] Þ Ρn

M m.n

Inner Products

||u|| = sqrt<u,u>

d(u,v) = ||u-v||

 $\cos(\text{theta}) = \langle u, v \rangle / (||u|| ||v||)$ u&v are orthagonal when <u,v>

```
= 0
```

proj_v u = <u,v>/<v,v> * v

For T:V->W The set of all vectors v in V that satisfies T(v)=0 is the kernal of T. ker(T) is a subspace of v. For T:Rⁿ ->R^m by T(x)=Ax ker(T) = solution space of Ax=0 & Cspace(A) = range(T)

Linear Combo

v is a linear combo of u_1 ... u_n

Linear Independence

a set of vectors S is LI if c1v1 +...+ ckvk = 0 has only the trivial solution. If there are other solutions S is LD. A set S is LI iff one of its vectors can be written as a combo of other S vectors.

V & W are Vspaces. T:V->W is a linear transformation of V into W if:

1. T(u+v) = T(u) = T(v)

2. T(cu) = cT(u)

Non-Homogeny

If xp is a solution to Ax = b then every solution to the system can be written as x = xp

Nullity

Nullspace(A) = {x ϵ Rⁿ : Ax = 0 Nullity(A) = dim(Nullspace(A)) = n - rank(A)

Orthogonal Sets

Set S in V is orthogonal when every pair of vectors in S is orthogonal. If each vector is a unit vector, then S is orthonormal

Published 4th June, 2016. Last updated 4th June, 2016. Page 1 of 2.

Sponsored by Readable.com Measure your website readability! https://readable.com

1. B = {v1, v2, ..., vn}

Cheatography

Linear Algebra Cheat Sheet by spoopyy via cheatography.com/28376/cs/8341/

One-to-One and Onto

T is one-to-one iff ker(T) = $\{0\}$

```
T is onto iff rank(T) = dim(W)
```

If dim(T) = dim(W) then T is oneto-one **iff** it is onto

Rank and Nullity of T

nullity(T) = dim(kernal)

rank(T) = dim(range)

range(T) + nullity(T) = n (in m_x n)

dim(domain) = dim(range) + dim(kernal)

Rank of a Matrix

Rank(A) = dim(Rspace) = dim(Cspace)

Similar Matrices

For square matrices A and A' of order n, A' is similar to A when there exits an invertible matrix P such that $A' = P^{-1} AP$

Spanning Sets

S = {v1...vk} is a subset of vector space V. S spans V if every vector in v can be written as a linear combo of vectors in S.

Test for Subspace

1. u+v are in W

2. cu is in w

Ву **ѕрооруу**

cheatography.com/spoopyy/

Published 4th June, 2016. Last updated 4th June, 2016. Page 2 of 2.

Sponsored by Readable.com Measure your website readability!

https://readable.com