Formula

Price of Longer Maturity Coupon Paying Bond

P = c/r* ${ }^{*}\left(1-1 /(1+r)^{t}\right)+$ ParValue $/(1+r)^{t}$

Price of Zero Coupon Bond

P = ParValue $/(1+r)^{t}$
Price of Short Maturity Coupon Paying Bond
P = Coupon/(1+r) $)^{t}+($ ParValue + Coupon $) /-$ $(1+r)^{t}$
Nominal Growth rate of Cash Flows
$\mathrm{i}=(1+\text { GrowthRate })^{*}(1+$ InflationRate $)-1$
Real Return Adjusted for Inflation
$r=(1+i) /(1+$ Inflation $)$
Present Value of Cash Flows
PV = Cash * $\left((1+\mathrm{i})^{\mathrm{t}-1} /(1+\text { DiscountRate })^{\mathrm{t}-1}+\right.$ $\left.(1+i)^{t /} /(1+\text { DiscountRate })^{t}+\ldots\right)$

Computing YTM

Rates $=$ Flat; Rates $=$ YTM.

Rates =/= Flat; Solve for Price, Swap Rates for Y and solve for Y
Discount Factors (D) for Zero Coupon Bonds
Price/100
Discount Factor (D) for Coupon Paying Bonds
Price $=C^{*} \mathrm{D}[1]+($ ParValue $+C) D[2]$
Calculation for Spot Rates Using Discount Factor
$r=(1 / D) T^{\top}-1$

For semiannual multiply answer by 2

Calculating Price with Discount Rates

$P=C^{*} D[1]+C^{*} D[2]+($ ParValue $+C) D[3]$

For semiannual C/2

Macaulay Definition

$D=(1+r) / r-\left\{[(1+r)+T(C-R)] /\left(C\left[(1+r)^{\top}-1\right]\right.\right.$ +r) $\}$

Where $R=$ Flat Rate Or YTM.
When Semiannual $\mathrm{r} / 2$ and $\mathrm{c} / 2$, divide final answer by 2

Modified Duration

$D^{*}=D / 1+r$

Formula (cont)

$P[1]^{*}(1+E A R)^{\top}=P[T]$
Converting Monthly APR to Semiannual
$(1+\mathrm{APR} / 12)^{6}-1$
Calculating for Spot Rates using Price Formula

Price $=$ ParValue/($1+r$) then solve for r

Descriptive

Constructing an Arbitage

e.g:

Year $1 \Rightarrow$ 100x[1] $+5 x[2]=7\{x[3]\}$

Year 2 => $105 x[2]=107\{x[3]\}$

Solve for $\mathrm{x}[1]$ and $\mathrm{x}[2]$
Computing Realized Returns assuming Dividend Reinvesting
e.g:

Invest $\$ 1000,1000 /$ Share Price $=$ \# of Shares
\# of Shares + [\# of Shares*DividendPayou-
t]/NextSharePrice

Repeat til end of Periods, compute the realized returns
Monthly Payment Questions
Owed Amount $=c / r^{*}\left[1-1 /(1+r)^{\top}\right]$

Solve for C , Make sure T is in the right format (Monthly Payments, Yearly, Daily)

What is your return if term structure remains flat and you hold for X years? TSR = Term Structure Rate $(1+r)^{\top}=R / 100$
$R=C^{*}(1+T S R)^{T-1}+C^{*}(1+T S R)^{T-2}+\ldots \ldots+$ $C^{*}(1+T S R)^{1}+($ ParValue $+C)$

Plug in R to first equation then solve for small r

Simple Trading Model

Note

Note: Spot Rates = Flat Term Rate. And Equal to YTM if the rates are flat. If not, YTM is found using the formula to your left.

