\documentclass[10pt,a4paper]{article} % Packages \usepackage{fancyhdr} % For header and footer \usepackage{multicol} % Allows multicols in tables \usepackage{tabularx} % Intelligent column widths \usepackage{tabulary} % Used in header and footer \usepackage{hhline} % Border under tables \usepackage{graphicx} % For images \usepackage{xcolor} % For hex colours %\usepackage[utf8x]{inputenc} % For unicode character support \usepackage[T1]{fontenc} % Without this we get weird character replacements \usepackage{colortbl} % For coloured tables \usepackage{setspace} % For line height \usepackage{lastpage} % Needed for total page number \usepackage{seqsplit} % Splits long words. %\usepackage{opensans} % Can't make this work so far. Shame. Would be lovely. \usepackage[normalem]{ulem} % For underlining links % Most of the following are not required for the majority % of cheat sheets but are needed for some symbol support. \usepackage{amsmath} % Symbols \usepackage{MnSymbol} % Symbols \usepackage{wasysym} % Symbols %\usepackage[english,german,french,spanish,italian]{babel} % Languages % Document Info \author{Sorahae} \pdfinfo{ /Title (hmari.pdf) /Creator (Cheatography) /Author (Sorahae) /Subject (Hmari Cheat Sheet) } % Lengths and widths \addtolength{\textwidth}{6cm} \addtolength{\textheight}{-1cm} \addtolength{\hoffset}{-3cm} \addtolength{\voffset}{-2cm} \setlength{\tabcolsep}{0.2cm} % Space between columns \setlength{\headsep}{-12pt} % Reduce space between header and content \setlength{\headheight}{85pt} % If less, LaTeX automatically increases it \renewcommand{\footrulewidth}{0pt} % Remove footer line \renewcommand{\headrulewidth}{0pt} % Remove header line \renewcommand{\seqinsert}{\ifmmode\allowbreak\else\-\fi} % Hyphens in seqsplit % This two commands together give roughly % the right line height in the tables \renewcommand{\arraystretch}{1.3} \onehalfspacing % Commands \newcommand{\SetRowColor}[1]{\noalign{\gdef\RowColorName{#1}}\rowcolor{\RowColorName}} % Shortcut for row colour \newcommand{\mymulticolumn}[3]{\multicolumn{#1}{>{\columncolor{\RowColorName}}#2}{#3}} % For coloured multi-cols \newcolumntype{x}[1]{>{\raggedright}p{#1}} % New column types for ragged-right paragraph columns \newcommand{\tn}{\tabularnewline} % Required as custom column type in use % Font and Colours \definecolor{HeadBackground}{HTML}{333333} \definecolor{FootBackground}{HTML}{666666} \definecolor{TextColor}{HTML}{333333} \definecolor{DarkBackground}{HTML}{23997E} \definecolor{LightBackground}{HTML}{F1F8F6} \renewcommand{\familydefault}{\sfdefault} \color{TextColor} % Header and Footer \pagestyle{fancy} \fancyhead{} % Set header to blank \fancyfoot{} % Set footer to blank \fancyhead[L]{ \noindent \begin{multicols}{3} \begin{tabulary}{5.8cm}{C} \SetRowColor{DarkBackground} \vspace{-7pt} {\parbox{\dimexpr\textwidth-2\fboxsep\relax}{\noindent \hspace*{-6pt}\includegraphics[width=5.8cm]{/web/www.cheatography.com/public/images/cheatography_logo.pdf}} } \end{tabulary} \columnbreak \begin{tabulary}{11cm}{L} \vspace{-2pt}\large{\bf{\textcolor{DarkBackground}{\textrm{Hmari Cheat Sheet}}}} \\ \normalsize{by \textcolor{DarkBackground}{Sorahae} via \textcolor{DarkBackground}{\uline{cheatography.com/176418/cs/36921/}}} \end{tabulary} \end{multicols}} \fancyfoot[L]{ \footnotesize \noindent \begin{multicols}{3} \begin{tabulary}{5.8cm}{LL} \SetRowColor{FootBackground} \mymulticolumn{2}{p{5.377cm}}{\bf\textcolor{white}{Cheatographer}} \\ \vspace{-2pt}Sorahae \\ \uline{cheatography.com/sorahae} \\ \end{tabulary} \vfill \columnbreak \begin{tabulary}{5.8cm}{L} \SetRowColor{FootBackground} \mymulticolumn{1}{p{5.377cm}}{\bf\textcolor{white}{Cheat Sheet}} \\ \vspace{-2pt}Published 6th February, 2023.\\ Updated 6th February, 2023.\\ Page {\thepage} of \pageref{LastPage}. \end{tabulary} \vfill \columnbreak \begin{tabulary}{5.8cm}{L} \SetRowColor{FootBackground} \mymulticolumn{1}{p{5.377cm}}{\bf\textcolor{white}{Sponsor}} \\ \SetRowColor{white} \vspace{-5pt} %\includegraphics[width=48px,height=48px]{dave.jpeg} Measure your website readability!\\ www.readability-score.com \end{tabulary} \end{multicols}} \begin{document} \raggedright \raggedcolumns % Set font size to small. Switch to any value % from this page to resize cheat sheet text: % www.emerson.emory.edu/services/latex/latex_169.html \footnotesize % Small font. \begin{multicols*}{2} \begin{tabularx}{8.4cm}{x{3.28 cm} x{4.72 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{8.4cm}}{\bf\textcolor{white}{Nervous system}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{2}{x{8.4cm}}{Two major subdivisions:} \tn % Row Count 1 (+ 1) % Row 1 \SetRowColor{white} 1. Central nervous system & (CNS; the brain and spinal cord) \tn % Row Count 3 (+ 2) % Row 2 \SetRowColor{LightBackground} 2. Peripheral nervous system & (PNS; neuronal tissues outside the CNS). \tn % Row Count 5 (+ 2) % Row 3 \SetRowColor{white} \mymulticolumn{2}{x{8.4cm}}{} \tn % Row Count 5 (+ 0) % Row 4 \SetRowColor{LightBackground} \mymulticolumn{2}{x{8.4cm}}{Anatomically divided into the:} \tn % Row Count 6 (+ 1) % Row 5 \SetRowColor{white} \mymulticolumn{2}{x{8.4cm}}{1. Autonomic} \tn % Row Count 7 (+ 1) % Row 6 \SetRowColor{LightBackground} \mymulticolumn{2}{x{8.4cm}}{2. Somatic} \tn % Row Count 8 (+ 1) \hhline{>{\arrayrulecolor{DarkBackground}}--} \SetRowColor{LightBackground} \mymulticolumn{2}{x{8.4cm}}{Autonomic nerves can also influence cancer development and progression.} \tn \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{8.4cm}{p{0.8 cm} x{7.2 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{8.4cm}}{\bf\textcolor{white}{ANATOMY OF THE AUTONOMIC NERVOUS SYSTEM}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{2}{x{8.4cm}}{Two major portions:} \tn % Row Count 1 (+ 1) % Row 1 \SetRowColor{white} & 1. Sympathetic (thoracolumbar) division \tn % Row Count 3 (+ 2) % Row 2 \SetRowColor{LightBackground} & 2. Parasympathetic (traditionally "craniosacral"). \tn % Row Count 5 (+ 2) % Row 3 \SetRowColor{white} -{}-{}-{}- & -{}-{}-{}- \tn % Row Count 6 (+ 1) \hhline{>{\arrayrulecolor{DarkBackground}}--} \SetRowColor{LightBackground} \mymulticolumn{2}{x{8.4cm}}{a. The {\bf{sympathetic preganglionic fibers}} leave CNS through the {\emph{thoracic, lumbar, and sacral spinal nerves.}} \newline \newline b. The {\bf{parasympathetic preganglionic fibers}} leave the CNS through the {\emph{cranial nerves (3rd, 7th, 9th, and 10th).}}} \tn \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{8.4cm}{x{4 cm} x{4 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{8.4cm}}{\bf\textcolor{white}{for Sympathetic}} \tn % Row 0 \SetRowColor{LightBackground} PARAVERTEBRAL & PREVERTEBRAL \tn % Row Count 1 (+ 1) % Row 1 \SetRowColor{white} Most thoracic and lumbar sympathetic preganglionic fibers are SHORT and terminate in ganglia located in here. & Most of the remaining sympathetic preganglionic fibers are somewhat LONGER and terminate \tn % Row Count 7 (+ 6) % Row 2 \SetRowColor{LightBackground} *Short & *Longer \tn % Row Count 8 (+ 1) \hhline{>{\arrayrulecolor{DarkBackground}}--} \SetRowColor{LightBackground} \mymulticolumn{2}{x{8.4cm}}{For PARASYMPATHETIC: \newline -Preganglionic parasympathetic fibers terminate in parasympathetic ganglia located outside the organs innervated: \newline \newline 1.Ciliary \newline 2. Pterygopalatine \newline 3. Submandibular \newline 4. Otic ganglia.} \tn \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{8.4cm}{x{4 cm} x{4 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{8.4cm}}{\bf\textcolor{white}{{\bf{ANS vs SNS}}}} \tn % Row 0 \SetRowColor{LightBackground} {\bf{Autonomic nervous system (ANS)}} & {\bf{Somatic nervous system (SNS)}} \tn % Row Count 2 (+ 2) % Row 1 \SetRowColor{white} It is concerned with control and integration of visceral functions necessary for life such as cardiac output, blood flow distribution, and digestion. & Motor portion of the somatic subdivision is largely concerned with movement, respiration, and posture. \tn % Row Count 10 (+ 8) % Row 2 \SetRowColor{LightBackground} Largely independent (autonomous) in that its activities are not under direct conscious control. & Both have important afferent (sensory) inputs that provide information regarding the internal and external environments and modify motor output through reflex arcs of varying complexity. \tn % Row Count 20 (+ 10) \hhline{>{\arrayrulecolor{DarkBackground}}--} \SetRowColor{LightBackground} \mymulticolumn{2}{x{8.4cm}}{Vagus nerve, also influences immune function and some CNS functions such as seizure discharge.} \tn \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{8.4cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{8.4cm}}{\bf\textcolor{white}{Major difference {\bf{CNS}} vs {\bf{ANS}}}} \tn \SetRowColor{white} \mymulticolumn{1}{x{8.4cm}}{Presence of a {\bf{GANGLION}} in {\emph{ANS}}% Row Count 1 (+ 1) } \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{8.4cm}{x{2.584 cm} x{2.508 cm} x{2.508 cm} } \SetRowColor{DarkBackground} \mymulticolumn{3}{x{8.4cm}}{\bf\textcolor{white}{Differentiating divisions of ANS}} \tn % Row 0 \SetRowColor{LightBackground} a. {\bf{Sympathetic Nervous System}} & b. {\bf{Parasympathetic Nervous System}} & c. {\bf{Enteric Nervous System}} \tn % Row Count 3 (+ 3) % Row 1 \SetRowColor{white} -Prepares body for intense "FIGHT OR FLIGHT" response. & -Relaxes body and inhibits or slows many high energy functions & -Large and highly organized collection of neurons located in walls of GI system. \tn % Row Count 10 (+ 7) % Row 2 \SetRowColor{LightBackground} {\emph{FIGHT OR FLIGHT (F/F}} & {\emph{REST OR DIGEST}} & {\emph{THIRD DIVISION OF ANS}} \tn % Row Count 12 (+ 2) % Row 3 \SetRowColor{white} - & - & Control motor activity of colon \tn % Row Count 15 (+ 3) \hhline{>{\arrayrulecolor{DarkBackground}}---} \SetRowColor{LightBackground} \mymulticolumn{3}{x{8.4cm}}{{\bf{ENS}} includes: \newline {\bf{1. MYENTERIC PLEXUS}} or the {\emph{Plexus of Auerbach}} \newline {\bf{2. SUBMUCOUS PLEXUS}} or the {\emph{Plexus of Meissner}}} \tn \hhline{>{\arrayrulecolor{DarkBackground}}---} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{8.4cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{8.4cm}}{\bf\textcolor{white}{ENS neuronal networks}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{8.4cm}}{1. {\bf{Myenteric plexus}} (the plexus of Auerbach)} \tn % Row Count 1 (+ 1) % Row 1 \SetRowColor{white} \mymulticolumn{1}{x{8.4cm}}{2. {\bf{Submucous plexus}} (the plexus of Meissner).} \tn % Row Count 2 (+ 1) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{8.4cm}{x{2.052 cm} x{2.736 cm} x{2.812 cm} } \SetRowColor{DarkBackground} \mymulticolumn{3}{x{8.4cm}}{\bf\textcolor{white}{{\bf{Neurotransmitters}}}} \tn % Row 0 \SetRowColor{LightBackground} & Location & NT \tn % Row Count 1 (+ 1) % Row 1 \SetRowColor{white} {\emph{Preganglionic}} & & Ach \tn % Row Count 3 (+ 2) % Row 2 \SetRowColor{LightBackground} {\emph{Postganglionic}} & {\bf{a. Parasympathetic}} & Ach \tn % Row Count 5 (+ 2) % Row 3 \SetRowColor{white} & {\bf{b. Sympathetic}} & NE \& few locations Ach \tn % Row Count 7 (+ 2) \hhline{>{\arrayrulecolor{DarkBackground}}---} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{8.4cm}{x{3.04 cm} p{0.76 cm} x{3.8 cm} } \SetRowColor{DarkBackground} \mymulticolumn{3}{x{8.4cm}}{\bf\textcolor{white}{{\bf{Receptors}}}} \tn % Row 0 \SetRowColor{LightBackground} & Type & \tn % Row Count 1 (+ 1) % Row 1 \SetRowColor{white} {\bf{Parasympathetic}} & N & Excitatory \tn % Row Count 3 (+ 2) % Row 2 \SetRowColor{LightBackground} & M & Excitatory or Inhibitory \tn % Row Count 5 (+ 2) % Row 3 \SetRowColor{white} {\bf{Sympathetic}} & Alpha & Excitatory \tn % Row Count 7 (+ 2) % Row 4 \SetRowColor{LightBackground} & Beta & Excitatory or Inhibitory \tn % Row Count 9 (+ 2) \hhline{>{\arrayrulecolor{DarkBackground}}---} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{8.4cm}{x{1.672 cm} x{4.56 cm} x{1.368 cm} } \SetRowColor{DarkBackground} \mymulticolumn{3}{x{8.4cm}}{\bf\textcolor{white}{Figure 6–1}} \tn % Row 0 \SetRowColor{LightBackground} \seqsplit{Parasympathetic} & Cardiac and smooth muscle, gland cells, nerve terminals & Ach/M \tn % Row Count 3 (+ 3) % Row 1 \SetRowColor{white} \seqsplit{Sympathetic} & Sweat glands & Ach, M \tn % Row Count 5 (+ 2) % Row 2 \SetRowColor{LightBackground} \seqsplit{Sympathetic} & Cardiac and smooth muscle, gland cells, nerve terminals & NE, α, β \tn % Row Count 8 (+ 3) % Row 3 \SetRowColor{white} \seqsplit{Sympathetic} & Renal vascular smooth muscle & NE, D/α, D1 \tn % Row Count 10 (+ 2) % Row 4 \SetRowColor{LightBackground} Somatic & Skeletal muscle & Ach, N \tn % Row Count 11 (+ 1) \hhline{>{\arrayrulecolor{DarkBackground}}---} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{8.4cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{8.4cm}}{\bf\textcolor{white}{TABLE 6–1}} \tn \SetRowColor{LightBackground} \mymulticolumn{1}{p{8.4cm}}{\vspace{1px}\centerline{\includegraphics[width=5.1cm]{/web/www.cheatography.com/public/uploads/sorahae_1675631475_Pcol.png}}} \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{8.4cm}{x{3.92 cm} x{4.08 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{8.4cm}}{\bf\textcolor{white}{TABLE 6–1}} \tn % Row 0 \SetRowColor{LightBackground} Substance & Functions \tn % Row Count 1 (+ 1) % Row 1 \SetRowColor{white} Acetylcholine (ACh) & The primary transmitter at ANS ganglia, at the somatic neuromuscular junction, and at parasympathetic postganglionic nerve endings. A primary excitatory transmitter to smooth muscle and secretory cells in the ENS. Probably also the major neuron-to-neuron ("ganglionic") transmitter in the ENS. \tn % Row Count 16 (+ 15) % Row 2 \SetRowColor{LightBackground} Adenosine triphosphate (ATP) & Acts as a transmitter or cotransmitter at many ANS-effector synapses. \tn % Row Count 20 (+ 4) % Row 3 \SetRowColor{white} Calcitonin gene-related peptide (CGRP) & Found with substance P in cardiovascular sensory nerve fibers. Present in some secretomotor ENS neurons and interneurons. A cardiac stimulant. \tn % Row Count 28 (+ 8) % Row 4 \SetRowColor{LightBackground} Cholecystokinin (CCK) & May act as a cotransmitter in some excitatory neuromuscular ENS neurons. \tn % Row Count 32 (+ 4) \end{tabularx} \par\addvspace{1.3em} \vfill \columnbreak \begin{tabularx}{8.4cm}{x{3.92 cm} x{4.08 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{8.4cm}}{\bf\textcolor{white}{TABLE 6–1 (cont)}} \tn % Row 5 \SetRowColor{LightBackground} Dopamine & A modulatory transmitter in some ganglia and the ENS. Possibly a postganglionic sympathetic transmitter in renal blood vessels. \tn % Row Count 7 (+ 7) % Row 6 \SetRowColor{white} Enkephalin and related opioid peptides & Present in some secretomotor and interneurons in the ENS. Appear to inhibit ACh release and thereby inhibit peristalsis. May stimulate secretion. \tn % Row Count 15 (+ 8) % Row 7 \SetRowColor{LightBackground} Galanin & Present in secretomotor neurons; may play a role in appetite-satiety mechanisms. \tn % Row Count 19 (+ 4) % Row 8 \SetRowColor{white} GABA (γ-aminobutyric acid) & May have presynaptic effects on excitatory ENS nerve terminals. Has some relaxant effect on the gut. Probably not a major transmitter in the ENS. \tn % Row Count 27 (+ 8) % Row 9 \SetRowColor{LightBackground} Gastrin-releasing peptide (GRP) & Extremely potent excitatory transmitter to gastrin cells. Also known as mammalian bombesin. \tn % Row Count 32 (+ 5) \end{tabularx} \par\addvspace{1.3em} \vfill \columnbreak \begin{tabularx}{8.4cm}{x{3.92 cm} x{4.08 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{8.4cm}}{\bf\textcolor{white}{TABLE 6–1 (cont)}} \tn % Row 10 \SetRowColor{LightBackground} Neuropeptide Y (NPY) & Found in many noradrenergic neurons. Present in some secretomotor neurons in the ENS and may inhibit secretion of water and electrolytes by the gut. Causes long-lasting vasoconstriction. It is also a cotransmitter in some parasympathetic postganglionic neurons. \tn % Row Count 14 (+ 14) % Row 11 \SetRowColor{white} Nitric oxide (NO) & A cotransmitter at inhibitory ENS and other neuromuscular junctions; may be especially important at sphincters. Cholinergic nerves innervating blood vessels appear to activate the synthesis of NO by vascular endothelium. NO is not stored, it is synthesized on demand by nitric oxide synthase, NOS; see Chapter 19. \tn % Row Count 30 (+ 16) \end{tabularx} \par\addvspace{1.3em} \vfill \columnbreak \begin{tabularx}{8.4cm}{x{3.92 cm} x{4.08 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{8.4cm}}{\bf\textcolor{white}{TABLE 6–1 (cont)}} \tn % Row 12 \SetRowColor{LightBackground} Norepinephrine (NE) & The primary transmitter at most sympathetic postganglionic nerve endings. \tn % Row Count 4 (+ 4) % Row 13 \SetRowColor{white} Serotonin (5-HT) & An important transmitter or cotransmitter at excitatory neuron-to-neuron junctions in the ENS. \tn % Row Count 9 (+ 5) % Row 14 \SetRowColor{LightBackground} Substance P, related tachykinins & Substance P is an important sensory neurotransmitter in the ENS and elsewhere. Tachykinins appear to be excitatory cotransmitters with ACh at ENS neuromuscular junctions. Found with CGRP in cardiovascular sensory neurons. Substance P is a vasodilator (probably via release of nitric oxide) \tn % Row Count 24 (+ 15) % Row 15 \SetRowColor{white} Vasoactive intestinal peptide (VIP) & Excitatory secretomotor transmitter in the ENS; may also be an inhibitory ENS neuromuscular cotransmitter. A probable cotransmitter in many cholinergic neurons. A vasodilator (found in many perivascular neurons) and cardiac stimulant. \tn % Row Count 36 (+ 12) \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{8.4cm}{x{4 cm} x{4 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{8.4cm}}{\bf\textcolor{white}{{\bf{CHOLINERGIC TRANSMISSION}}}} \tn % Row 0 \SetRowColor{LightBackground} {\bf{STEP 1: Synthesized by Choline Acetyltransferase (ChAT)}} & -Acetyl-CoA synthesized in {\emph{mitochondria}} \tn % Row Count 3 (+ 3) % Row 1 \SetRowColor{white} & Choline transported into the neuron \tn % Row Count 5 (+ 2) % Row 2 \SetRowColor{LightBackground} & Blocked by {\bf{hemicholinium}} {\emph{(blocks uptake of choline)}} \tn % Row Count 8 (+ 3) % Row 3 \SetRowColor{white} -{}-{}-{}- & -{}-{}-{}- \tn % Row Count 9 (+ 1) % Row 4 \SetRowColor{LightBackground} {\bf{STEP 2: Ach transported into SMALL CLEAR VESICLES}} & Transporter can be blocked by {\bf{vesamicol}} {\emph{(prevents storage or depletes transmitter storage)}} \tn % Row Count 14 (+ 5) % Row 5 \SetRowColor{white} -{}-{}-{}- & -{}-{}-{}- \tn % Row Count 15 (+ 1) % Row 6 \SetRowColor{LightBackground} {\bf{STEP 3: Release of transmitter is Calcium-dependent}} & -triggered by action potentials \tn % Row Count 18 (+ 3) % Row 7 \SetRowColor{white} & -ACh release blocked by {\bf{botulinum toxin}} \tn % Row Count 21 (+ 3) % Row 8 \SetRowColor{LightBackground} -{}-{}-{}- & -{}-{}-{}- \tn % Row Count 22 (+ 1) % Row 9 \SetRowColor{white} {\bf{STEP 4: ACh binds to receptors}} & (cholinoceptors) \tn % Row Count 24 (+ 2) % Row 10 \SetRowColor{LightBackground} -{}-{}-{}- & -{}-{}-{}- \tn % Row Count 25 (+ 1) % Row 11 \SetRowColor{white} {\bf{STEP 5: Catabolized by \seqsplit{acetylcholinesterase} (AChE)}} & -breaks {\emph{ACh}} into {\bf{choline and acetate}} \tn % Row Count 28 (+ 3) % Row 12 \SetRowColor{LightBackground} & terminate action of transmitter \tn % Row Count 30 (+ 2) \end{tabularx} \par\addvspace{1.3em} \vfill \columnbreak \begin{tabularx}{8.4cm}{x{4 cm} x{4 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{8.4cm}}{\bf\textcolor{white}{{\bf{CHOLINERGIC TRANSMISSION}} (cont)}} \tn % Row 13 \SetRowColor{LightBackground} & half-life of ACh is very short \tn % Row Count 2 (+ 2) % Row 14 \SetRowColor{white} & AChE in other tissues (eg. {\bf{RBC}}) \tn % Row Count 4 (+ 2) % Row 15 \SetRowColor{LightBackground} & \seqsplit{Butyrylcholinesterase} (pseudo-) \tn % Row Count 6 (+ 2) % Row 16 \SetRowColor{white} -{}-{}-{}- & -{}-{}-{}- \tn % Row Count 7 (+ 1) \hhline{>{\arrayrulecolor{DarkBackground}}--} \SetRowColor{LightBackground} \mymulticolumn{2}{x{8.4cm}}{{\bf{ChAT and AChE}} used during synthesis and degradation of ACh.} \tn \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{8.4cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{8.4cm}}{\bf\textcolor{white}{{\bf{5 KEY FEATURES OF NEUROTRANSMITTER FUNCTION}}}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{8.4cm}}{1. {\bf{Synthesis}}} \tn % Row Count 1 (+ 1) % Row 1 \SetRowColor{white} \mymulticolumn{1}{x{8.4cm}}{2. {\bf{Storage}}} \tn % Row Count 2 (+ 1) % Row 2 \SetRowColor{LightBackground} \mymulticolumn{1}{x{8.4cm}}{3. {\bf{Release}}} \tn % Row Count 3 (+ 1) % Row 3 \SetRowColor{white} \mymulticolumn{1}{x{8.4cm}}{4. {\bf{Termination Of Action Of The Transmitter}}} \tn % Row Count 4 (+ 1) % Row 4 \SetRowColor{LightBackground} \mymulticolumn{1}{x{8.4cm}}{5. {\bf{Receptor Effects}}} \tn % Row Count 5 (+ 1) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{8.4cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{8.4cm}}{\bf\textcolor{white}{Acetylcholine Synthesis}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{8.4cm}}{1. {\bf{ACh}} made from choline + acetyl CoA} \tn % Row Count 1 (+ 1) % Row 1 \SetRowColor{white} \mymulticolumn{1}{x{8.4cm}}{2. In synaptic cleft, ACh is rapidly broken down by enzyme {\bf{Acetylcholinesterase}}} \tn % Row Count 3 (+ 2) % Row 2 \SetRowColor{LightBackground} \mymulticolumn{1}{x{8.4cm}}{3. {\bf{Choline}} is transported back into axon terminal and used to make more ACh.} \tn % Row Count 5 (+ 2) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{8.4cm}{x{1.84 cm} x{6.16 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{8.4cm}}{\bf\textcolor{white}{{\bf{STEPS in ADRENERGIC TRANSMISSION}}}} \tn % Row 0 \SetRowColor{LightBackground} {\bf{STEP 1}} & Synthesis of catecholamines {\bf{(Dopamine, NE)}} \tn % Row Count 2 (+ 2) % Row 1 \SetRowColor{white} {\bf{STEP 2}} & Uptake into storage vesicle \tn % Row Count 4 (+ 2) % Row 2 \SetRowColor{LightBackground} {\bf{STEP 3}} & Release of NT \tn % Row Count 6 (+ 2) % Row 3 \SetRowColor{white} {\bf{STEP 4}} & Binding to receptor \tn % Row Count 8 (+ 2) % Row 4 \SetRowColor{LightBackground} {\bf{STEP 5/6}} & Degradation of {\bf{NE}} \tn % Row Count 10 (+ 2) \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{8.4cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{8.4cm}}{\bf\textcolor{white}{Termination of NORADRENERGIC TRANSMISSION}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{8.4cm}}{1. {\bf{Simple diffusion away from receptor site}} (with eventual metabolism in plasma or liver} \tn % Row Count 2 (+ 2) % Row 1 \SetRowColor{white} \mymulticolumn{1}{x{8.4cm}}{2. {\bf{Reuptake into the nerve terminals by NET}} or into perisynaptic glia or other cells} \tn % Row Count 4 (+ 2) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{8.4cm}{x{4 cm} x{4 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{8.4cm}}{\bf\textcolor{white}{BIOSYNTHESIS OF CATECHOLAMINES}} \tn % Row 0 \SetRowColor{LightBackground} 1. {\bf{Tyrosine}} convert to {\bf{DOPA}} by {\bf{Tyrosine hydroxylase}} & can be inhibited by {\emph{metyrosine}} (a tyrosine analog) \tn % Row Count 4 (+ 4) % Row 1 \SetRowColor{white} 2. {\bf{DOPA}} convert to {\bf{Dopamine}} by {\bf{Dopa decarboxylase}} & - \tn % Row Count 8 (+ 4) % Row 2 \SetRowColor{LightBackground} 3. {\bf{Dopamine}} convert to {\bf{NE}} by {\bf{Dopamine-β-hydroxylase}} & In most sympathetic postganglionic neurons, NE is the {\bf{final product}}) \tn % Row Count 12 (+ 4) % Row 3 \SetRowColor{white} 4. {\bf{NE}} convert to {\bf{Epinephrine}} by {\bf{Phenylethanolamine-N-methyltransferase}} & {\emph{Methylated form}} \tn % Row Count 17 (+ 5) % Row 4 \SetRowColor{LightBackground} \mymulticolumn{2}{x{8.4cm}}{\textasciitilde{}} \tn % Row Count 18 (+ 1) \hhline{>{\arrayrulecolor{DarkBackground}}--} \SetRowColor{LightBackground} \mymulticolumn{2}{x{8.4cm}}{{\emph{Additional}} \newline \newline a. {\bf{Tyrosine}} metabolized by {\emph{L-Amino acid decarboxylase}} to form {\bf{TYRAMINE}} (the product of metabolism of tyrosine). \newline \newline b. {\bf{Tyramine}} metabolized by {\emph{Dopamine-β-hydroxylase}} to {\bf{Octopamine}} \newline \newline c. {\bf{Octopamine}} metabolized by {\emph{hydroxylase (from the liver)}} to form {\bf{NE}}} \tn \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{8.4cm}{x{2.48 cm} x{5.52 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{8.4cm}}{\bf\textcolor{white}{WAYS OF STOPPING NEUROTRANSMITTER}} \tn % Row 0 \SetRowColor{LightBackground} 1. {\bf{DIFFUSION}} & - \tn % Row Count 2 (+ 2) % Row 1 \SetRowColor{white} 2. {\bf{DEGRADATION}} & metabolic enzyme process (eg. AChE metabolize ACh) \tn % Row Count 4 (+ 2) % Row 2 \SetRowColor{LightBackground} 3. {\bf{REUPTAKE}} & into the noradrenergic neuron/ adrenergic neuron \tn % Row Count 6 (+ 2) \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{8.4cm}{x{3.36 cm} x{4.64 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{8.4cm}}{\bf\textcolor{white}{NT CHEMISTRY OF THE ANS}} \tn % Row 0 \SetRowColor{LightBackground} {\bf{CHOLINERGIC FIBERS}} & {\bf{NORADRENERGIC (ADRENERGIC) FIBERS}} \tn % Row Count 2 (+ 2) % Row 1 \SetRowColor{white} releasing Ach (Acetylcholine) & release Norepinephrine (NE)/ Noradrenaline \tn % Row Count 4 (+ 2) \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{8.4cm}{x{4.4 cm} x{3.6 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{8.4cm}}{\bf\textcolor{white}{AUTONOMIC RECEPTOR (NT, R)}} \tn % Row 0 \SetRowColor{LightBackground} {\bf{PARASYMPATHETIC}} & {\bf{SYMPATHETIC}} \tn % Row Count 1 (+ 1) % Row 1 \SetRowColor{white} NT: {\bf{ACh}} {\emph{(Cholinoceptors)}} & NT: {\bf{NE}} {\emph{(Adrenoceptors)}} \tn % Row Count 3 (+ 2) % Row 2 \SetRowColor{LightBackground} R={\bf{N/M}} & R= {\bf{α,β, D}} \tn % Row Count 4 (+ 1) % Row 3 \SetRowColor{white} Nicotinic receptors= {\bf{NN/NM}} & α= {\bf{1/2}} \tn % Row Count 6 (+ 2) % Row 4 \SetRowColor{LightBackground} Muscarinic receptors= {\bf{M1 to M5}} & β= {\bf{1-3}} \tn % Row Count 8 (+ 2) % Row 5 \SetRowColor{white} & D= {\bf{(D1-D5)}} \tn % Row Count 9 (+ 1) \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{8.4cm}{x{2.64 cm} x{5.36 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{8.4cm}}{\bf\textcolor{white}{{\emph{AUTONOMIC RECEPTOR}}}} \tn % Row 0 \SetRowColor{LightBackground} {\bf{Alkaloids}} & {\emph{Muscarine}} and {\emph{Nicotine}} \tn % Row Count 1 (+ 1) \hhline{>{\arrayrulecolor{DarkBackground}}--} \SetRowColor{LightBackground} \mymulticolumn{2}{x{8.4cm}}{The {\bf{sensory fibers in the nonadrenergic, noncholinergic systems}} are probably better termed {\emph{"sensory-efferent"}} or {\emph{"sensorylocal effector"}} fibers because, {\bf{when activated by a sensory input{\emph{, they are capable of }}releasing transmitter peptides from the sensory ending itself{\bf{, from local axon branches, and from collaterals that terminate in the autonomic ganglia. \newline \newline These peptides are }}potent agonists}}{\emph{ in many }}autonomic effector tissues.*} \tn \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{8.4cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{8.4cm}}{\bf\textcolor{white}{METABOLISM OF CATECHOLAMINES by COMT \& MAO}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{8.4cm}}{Catecholamines} \tn % Row Count 1 (+ 1) % Row 1 \SetRowColor{white} \mymulticolumn{1}{x{8.4cm}}{{\bf{EPINEPHRINE}}} \tn % Row Count 2 (+ 1) % Row 2 \SetRowColor{LightBackground} \mymulticolumn{1}{x{8.4cm}}{} \tn % Row Count 2 (+ 0) % Row 3 \SetRowColor{white} \mymulticolumn{1}{x{8.4cm}}{{\bf{NE}}} \tn % Row Count 3 (+ 1) % Row 4 \SetRowColor{LightBackground} \mymulticolumn{1}{x{8.4cm}}{} \tn % Row Count 3 (+ 0) % Row 5 \SetRowColor{white} \mymulticolumn{1}{x{8.4cm}}{{\bf{DOPAMINE}}} \tn % Row Count 4 (+ 1) % Row 6 \SetRowColor{LightBackground} \mymulticolumn{1}{x{8.4cm}}{} \tn % Row Count 4 (+ 0) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{8.4cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{8.4cm}}{\bf\textcolor{white}{Read}} \tn \SetRowColor{white} \mymulticolumn{1}{x{8.4cm}}{Read Katzung CH. 6 (P.99) {\bf{TABLE 6-2 Major autonomic receptor types}}% Row Count 2 (+ 2) } \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{8.4cm}{p{0.8 cm} p{0.8 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{8.4cm}}{\bf\textcolor{white}{FUNCTIONAL ORGANIZATION OF AUTONOMIC ACTIVITY}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{2}{x{8.4cm}}{} \tn % Row Count 0 (+ 0) \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{8.4cm}{x{3.12 cm} x{4.88 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{8.4cm}}{\bf\textcolor{white}{{\bf{A. Integration of Cardiovascular Function}}}} \tn % Row 0 \SetRowColor{LightBackground} {\bf{Mean arterial pressure}} & the primary controlled variable in cardiovascular function \tn % Row Count 3 (+ 3) % Row 1 \SetRowColor{white} & -changes in any variable contributing to mean arterial pressure (eg, a drug-induced increase in peripheral vascular resistance) evoke powerful homeostatic secondary responses \tn % Row Count 11 (+ 8) % Row 2 \SetRowColor{LightBackground} {\bf{Homeostatic response}} & may be sufficient to reduce the change in mean arterial pressure and to reverse the drug's effects on heart rate. \tn % Row Count 16 (+ 5) \hhline{>{\arrayrulecolor{DarkBackground}}--} \SetRowColor{LightBackground} \mymulticolumn{2}{x{8.4cm}}{Example: {\bf{Slow infusion of NE}} \newline \newline {\bf{Increased baroreceptor activity}} causes the {\emph{decreased central sympathetic outflow}} and {\emph{increased vagal outflow.}} \newline \newline {\bf{Net effect}} of ordinary pressor doses of norepinephrine in a normal subject is to produce a {\bf{marked increase}} in {\emph{peripheral vascular resistance.}} \newline {\bf{An increase in mean arterial pressure}}, and often, a {\emph{slowing of heart rate.}} \newline \newline {\bf{NEGATIVE FEEDBACK RESPONSE}} is present.} \tn \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{8.4cm}{x{2.56 cm} x{5.44 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{8.4cm}}{\bf\textcolor{white}{B. Presynaptic Regulation}} \tn % Row 0 \SetRowColor{LightBackground} {\bf{Autoreceptors}} & {\emph{Presynaptic receptors}} that respond to the primary transmitter substance released by the nerve ending \tn % Row Count 4 (+ 4) % Row 1 \SetRowColor{white} & usually inhibitory, but in addition to the excitatory β receptors on noradrenergic fibers, many cholinergic fibers, especially somatic motor fibers, have excitatory nicotinic autoreceptors. \tn % Row Count 12 (+ 8) % Row 2 \SetRowColor{LightBackground} {\bf{Heteroreceptors}} & {\emph{respond to many other substances}} \tn % Row Count 14 (+ 2) % Row 3 \SetRowColor{white} & activated by substances released from other nerve terminals that synapse with the nerve ending. \tn % Row Count 18 (+ 4) \hhline{>{\arrayrulecolor{DarkBackground}}--} \SetRowColor{LightBackground} \mymulticolumn{2}{x{8.4cm}}{Principle of {\bf{negative feedback control}} is also found at the presynaptic level of autonomic function. \newline \newline -have been shown to exist at {\bf{most nerve endings}}} \tn \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{8.4cm}{x{4 cm} x{4 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{8.4cm}}{\bf\textcolor{white}{C. Postsynaptic Regulation}} \tn % Row 0 \SetRowColor{LightBackground} Can be considered from two perspectives: & 1. {\bf{Modulation by previous activity at the primary receptor}} \tn % Row Count 4 (+ 4) % Row 1 \SetRowColor{white} & 2. {\bf{Modulation by other simultaneous events.}} \tn % Row Count 7 (+ 3) % Row 2 \SetRowColor{LightBackground} \mymulticolumn{2}{x{8.4cm}}{-{}-} \tn % Row Count 8 (+ 1) % Row 3 \SetRowColor{white} FIRST MECHANISM & {\bf{Up-regulation and down-regulation}} are known to {\emph{occur in response to decreased or increased activation}}, respectively, {\bf{of the receptors.}} \tn % Row Count 16 (+ 8) % Row 4 \SetRowColor{LightBackground} & {\bf{Extreme form of up-regulation{\emph{ occurs after denervation of some tissues, resulting in }}denervation supersensitivity of the tissue}}* to activators of that receptor type. \tn % Row Count 25 (+ 9) % Row 5 \SetRowColor{white} & ex: {\bf{Nicotinic receptors are normally restricted to the end plate regions underlying somatic motor nerve terminals.}} \tn % Row Count 31 (+ 6) \end{tabularx} \par\addvspace{1.3em} \vfill \columnbreak \begin{tabularx}{8.4cm}{x{4 cm} x{4 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{8.4cm}}{\bf\textcolor{white}{C. Postsynaptic Regulation (cont)}} \tn % Row 6 \SetRowColor{LightBackground} & ex: {\bf{Prolonged administration of large doses of reserpine,}} a norepinephrine depleter, can cause increased sensitivity of the smooth muscle and cardiac muscle effector cells \tn % Row Count 9 (+ 9) % Row 7 \SetRowColor{white} SECOND MECHANISM & {\bf{Involves modulation of the primary \seqsplit{transmitter-receptor} event}} by events evoked by the same or other transmitters acting on different postsynaptic receptors. \tn % Row Count 17 (+ 8) % Row 8 \SetRowColor{LightBackground} & ex: {\bf{Ganglionic transmission}} \tn % Row Count 19 (+ 2) \hhline{>{\arrayrulecolor{DarkBackground}}--} \SetRowColor{LightBackground} \mymulticolumn{2}{x{8.4cm}}{{\bf{Postganglionic cells are activated (depolarized)}} due to {\emph{binding of an appropriate ligand to a neuronal nicotinic (NN) acetylcholine receptor.}} \newline \newline Resulting: \newline {\bf{a. Fast excitatory postsynaptic potential (EPSP)}} evokes a propagated action potential if {\emph{threshold is reached.}}} \tn \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{8.4cm}{p{4 cm} p{4 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{8.4cm}}{\bf\textcolor{white}{Continued}} \tn % Row 0 \SetRowColor{LightBackground} - & - \tn % Row Count 1 (+ 1) \hhline{>{\arrayrulecolor{DarkBackground}}--} \SetRowColor{LightBackground} \mymulticolumn{2}{x{8.4cm}}{{\bf{b. Often followed by a }}small and slowly developing{\bf{ but longer-lasting hyperpolarizing afterpotential—a }}slow inhibitory postsynaptic potential (IPSP).{\bf{ \newline \newline 1. }}Hyperpolarization involves opening of potassium channels by M2 cholinoceptors.{\bf{ \newline \newline 2. }}Small, slow excitatory postsynaptic potential caused by closure of potassium channels linked to M1 cholinoceptors.{\bf{ \newline \newline 3. }}Late, very slow EPSP may be evoked by peptides released from other fibers.**} \tn \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} % That's all folks \end{multicols*} \end{document}