Hmari Cheat Sheet by Sorahae via cheatography.com/176418/cs/36921/

ANS vs SNS

Nervous system

1. Central nervous system 2. Peripheral nervous

(CNS; the brain and spinal cord)
(PNS; neuronal tissues outside the
CNS).

Anatomically divided into the:

- 1. Autonomic
- 2. Somatic

system

Autonomic nerves can also influence cancer development and progression.

ANATOMY OF THE AUTONOMIC NERVOUS SYSTEM

Two major portions:

- 1. Sympathetic (thoracolumbar) division
- 2. Parasympathetic (traditionally "craniosacral").

a. The sympathetic preganglionic fibers leave CNS through the thoracic, lumbar, and sacral spinal nerves.

b. The parasympathetic preganglionic fibers leave the CNS through the cranial nerves (3rd, 7th, 9th, and 10th).

for Sympathetic

PARAVERTEBRAL Most thoracic and lumbar sympathetic preganglionic fibers are SHORT and terminate in ganglia located in here.

PREVERTEBRAL

Most of the remaining sympathetic preganglionic fibers are somewhat LONGER and terminate *Longer

For PARASYMPATHETIC:

-Preganglionic parasympathetic fibers terminate in parasympathetic ganglia located outside the organs innervated:

1.Ciliary

*Short

- 2. Pterygopalatine
- 3. Submandibular
- 4. Otic ganglia.

By Sorahae cheatography.com/sorahae/ Published 6th February, 2023. Last updated 6th February, 2023. Page 1 of 6.

Sponsored by Readable.com Measure your website readability! https://readable.com

Autonomic nervous system (ANS)	Somatic nervous system (SNS)
It is concerned with control and integration of visceral functions necessary for life such as cardiac output, blood flow distribution, and digestion.	Motor portion of the somatic subdiv- ision is largely concerned with movement, respiration, and posture.
Largely independent (auton- omous) in that its activities are not under direct conscious control.	Both have important afferent (sensory) inputs that provide inform- ation regarding the internal and external environments and modify motor output through reflex arcs of varying complexity.

Vagus nerve, also influences immune function and some CNS functions such as seizure discharge.

Major difference CNS vs ANS

Presence of a GANGLION in ANS

Differentiating divisions of ANS

-		
a. Sympathetic Nervous System	b. Parasympathetic Nervous System	c. Enteric Nervous System
-Prepares body for intense "- FIGHT OR FLIGHT" response.	-Relaxes body and inhibits or slows many high energy functions	-Large and highly organized collection of neurons located in walls of GI system.
FIGHT OR FLIGHT (F/F	REST OR DIGEST	THIRD DIVISION OF ANS
-	-	Control motor activity of colon

ENS includes:

1. MYENTERIC PLEXUS or the Plexus of Auerbach

2. SUBMUCOUS PLEXUS or the Plexus of Meissner

Hmari Cheat Sheet

by Sorahae via cheatography.com/176418/cs/36921/

ENS neuronal networks

Cheatography

- 1. Myenteric plexus (the plexus of Auerbach)
- 2. Submucous plexus (the plexus of Meissner).

Neurotransmitters	5	
	Location	NT
Preganglionic		Ach
Postganglionic	a. Parasympathetic	Ach
	b. Sympathetic	NE & few locations Ach

Receptors		
	Туре	
Parasympathetic	Ν	Excitatory
	Μ	Excitatory or Inhibitory
Sympathetic	Alpha	Excitatory
	Beta	Excitatory or Inhibitory

Figure 6–1		
Parasy- mpathetic	Cardiac and smooth muscle, gland cells, nerve terminals	Ach/M
Sympat- hetic	Sweat glands	Ach, M
Sympat- hetic	Cardiac and smooth muscle, gland cells, nerve terminals	ΝΕ, α, β
Sympat- hetic	Renal vascular smooth muscle	NE, D/α, D1
Somatic	Skeletal muscle	Ach, N

TABLE 6-1	
Substance	Functions
Acetyl- choline (ACh)	The primary transmitter at ANS ganglia, at the somatic neuromuscular junction, and at parasympathetic postganglionic nerve endings. A primary excitatory transmitter to smooth muscle and secretory cells in the ENS. Probably also the major neuron-to-neuron ("ganglionic") transmitter in the ENS.
Adenosine tripho- sphate (ATP)	Acts as a transmitter or cotransmitter at many ANS-ef- fector synapses.
Calcitonin gene-r- elated peptide (CGRP)	Found with substance P in cardiovascular sensory nerve fibers. Present in some secretomotor ENS neurons and interneurons. A cardiac stimulant.
Cholecyst- okinin (CCK)	May act as a cotransmitter in some excitatory neurom- uscular ENS neurons.
Dopamine	A modulatory transmitter in some ganglia and the ENS. Possibly a postganglionic sympathetic transmitter in renal blood vessels.
Enkephalin and related opioid peptides	Present in some secretomotor and interneurons in the ENS. Appear to inhibit ACh release and thereby inhibit peristalsis. May stimulate secretion.

TABLE 6-1

By Sorahae cheatography.com/sorahae/ Published 6th February, 2023. Last updated 6th February, 2023. Page 2 of 6.

Hmari Cheat Sheet by Sorahae via cheatography.com/176418/cs/36921/

TABLE 6-1 (cont)

Galanin	Present in secretomotor neurons; may play a role in appetite-satiety mechanisms.
GABA (γ-ami- nob- utyric acid)	May have presynaptic effects on excitatory ENS nerve terminals. Has some relaxant effect on the gut. Probably not a major transmitter in the ENS.
Gastri- n-rele- asing peptide (GRP)	Extremely potent excitatory transmitter to gastrin cells. Also known as mammalian bombesin.
Neurop eptide Y (NPY)	Found in many noradrenergic neurons. Present in some secretomotor neurons in the ENS and may inhibit secretion of water and electrolytes by the gut. Causes long-lasting vasoconstriction. It is also a cotransmitter in some parasympathetic postganglionic neurons.
Nitric oxide (NO)	A cotransmitter at inhibitory ENS and other neuromuscular junctions; may be especially important at sphincters. Cholinergic nerves innervating blood vessels appear to activate the synthesis of NO by vascular endothelium. NO is not stored, it is synthesized on demand by nitric oxide synthase, NOS; see Chapter 19.

TABLE 6-1 (cont) Norepinep-The primary transmitter at most sympathetic postgahrine (NE) nglionic nerve endings. Serotonin An important transmitter or cotransmitter at excitatory (5-HT) neuron-to-neuron junctions in the ENS. Substance Substance P is an important sensory neurotransmitter P, related in the ENS and elsewhere. Tachykinins appear to be tachykexcitatory cotransmitters with ACh at ENS neuromuscular junctions. Found with CGRP in cardiovascular inins sensory neurons. Substance P is a vasodilator (probably via release of nitric oxide) Vasoactive Excitatory secretomotor transmitter in the ENS; may intestinal also be an inhibitory ENS neuromuscular cotransmipeptide tter. A probable cotransmitter in many cholinergic (VIP) neurons. A vasodilator (found in many perivascular neurons) and cardiac stimulant.

CHOLINERGIC TRANSMISSION STEP 1: Synthesized by Choline -Acetyl-CoA synthesized in Acetyltransferase (ChAT) mitochondria Choline transported into the neuron Blocked by hemicholinium (blocks uptake of choline) ---

C

By Sorahae cheatography.com/sorahae/

Published 6th February, 2023. Last updated 6th February, 2023. Page 3 of 6.

Hmari Cheat Sheet by Sorahae via cheatography.com/176418/cs/36921/

CHOLINERGIC TRANSMISSION (cont)

STEP 2: Ach transported into SMALL CLEAR	Transporter can be blocked by vesamicol (prevents storage or depletes	
VESICLES	transmitter storage)	
STEP 3: Release of transmitter is Calcium-d- ependent	-triggered by action potentials	
	-ACh release blocked by botulinum toxin	
STEP 4: ACh binds to	(cholinoceptors)	
receptors		
STEP 5: Catabolized by acetylcholinesterase (AChE)	-breaks ACh into choline and acetate	
	terminate action of transmitter	
	half-life of ACh is very short	
	AChE in other tissues (eg. RBC)	
	Butyrylcholinesterase (pseudo-)	
ChAT and AChE used during synthesis and degradation of ACh		

 $\ensuremath{\mathsf{ChAT}}\xspace$ and $\ensuremath{\mathsf{AChE}}\xspace$ used during synthesis and degradation of ACh.

5 KEY FEATURES OF NEUROTRANSMITTER FUNCTION

- 1. Synthesis
- 2. Storage
- 3. Release
- 4. Termination Of Action Of The Transmitter
- 5. Receptor Effects

Acetylcholine Synthesis

1. ACh made from choline + acetyl CoA

2. In synaptic cleft, ACh is rapidly broken down by enzymeAcetylcholinesterase

3. Choline is transported back into axon terminal and used to make more ACh.

STEPS in ADRENERGIC TRANSMISSION

STEP 1	Synthesis of catecholamines (Dopamine, NE)
STEP 2	Uptake into storage vesicle
STEP 3	Release of NT
STEP 4	Binding to receptor
STEP 5/6	Degradation of NE

Termination of NORADRENERGIC TRANSMISSION

1. Simple diffusion away from receptor site (with eventual metabolism in plasma or liver

2. Reuptake into the nerve terminals by NET or into perisynaptic glia or other cells

BIOSYNTHESIS OF CATECHOLAMINES

1. Tyrosine convert to DOPA by Tyrosine hydroxylase	can be inhibited by <i>metyrosine</i> (a tyrosine analog)
2. DOPA convert to Dopamine by Dopa decarboxylase	-
3. Dopamine convert to NE by Dopamine-β-hydroxylase	In most sympathetic postgangl- ionic neurons, NE is the final product)
4. NE convert to Epinephrine by Phenylethanolamine-N-methyltra- nsferase	Methylated form

Additional

a. **Tyrosine** metabolized by *L-Amino acid decarboxylase* to form **TYRAMINE** (the product of metabolism of tyrosine).

b. Tyramine metabolized by Dopamine-*β*-hydroxylase to Octopamine

c. Octopamine metabolized by *hydroxylase (from the liver)* to form NE

By Sorahae cheatography.com/sorahae/

Published 6th February, 2023. Last updated 6th February, 2023. Page 4 of 6.

Hmari Cheat Sheet

by Sorahae via cheatography.com/176418/cs/36921/

WAYS OF STOPPING NEUROTRANSMITTER

Cheatography

1. DIFFUSION	-
2. Degrad- Ation	metabolic enzyme process (eg. AChE metabolize ACh)
3. REUPTAKE	into the noradrenergic neuron/ adrenergic neuron

NT CHEMISTRY OF THE ANS

CHOLINERGIC FIBERS	NORADRENERGIC (ADRENERGIC) FIBERS
releasing Ach (Acetylch-	release Norepinephrine (NE)/ Noradr-
oline)	enaline

AUTONOMIC RECEPTOR (NT, R)

PARASYMPATHETIC	SYMPATHETIC
NT: ACh (Cholinoceptors)	NT: NE (Adrenoceptors)
R=N/M	R=α,β, D
Nicotinic receptors= NN/NM	α= 1/2
Muscarinic receptors= M1 to M5	β= 1-3
	D= (D1-D5)

AUTONOMIC RECEPTOR Alkaloids Muscarine and Nicotine

The **sensory fibers in the nonadrenergic, noncholinergic systems** are probably better termed *"sensory-efferent"* or *"sensorylocal effector"* fibers because, **when activated by a sensory input**, *they are capable of releasing transmitter peptides from the sensory ending itself**, from local axon branches, and from collaterals that terminate in the autonomic ganglia.

These peptides are **potent agonists** in many *autonomic effector tissues.*

METABOLISM OF CATECHOLAMINES by COMT & MAO

Catech- ola- mines	COMT/MAO	Product 1	COMT/MAO	Product 2
EPINEP HRINE	=MAO	Dihydroxy- mandelic acid	COMT	3-Methoxy- 4-hydrox- ymandelic acid (VMA)
	=COMT	Metane- phrine	MAO	3-Methoxy- 4-hydrox- ymandelic acid (VMA)

By Sorahae cheatography.com/sorahae/

Published 6th February, 2023. Last updated 6th February, 2023. Page 5 of 6.

METABOLISM OF CATECHOLAMINES by COMT & MAO (cont)				
NE	=MAO	Dihydroxy- mandelic acid	COMT	3-Methoxy-4 hydroxymandelic acid (VMA)
	=COMT	Normetane- phrine	MAO	3-Methoxy-4 hydroxymandelic acid (VMA)
DOPAMINE	=MAO	Dihydroxy- phenylacetic acid	COMT	Homovanillic acid
	=COMT	3-Methoxy- tyramine	MAO	Homovanillic acid

Read

Read Katzung CH. 6 (P.99) TABLE 6-2 Major autonomic receptor types

FUNCTIONAL ORGANIZATION OF AUTONOMIC ACTIVITY

A. Integration of Cardiovascular Function Mean the primary controlled variable in cardiovas

Mean arterial pressure	the primary controlled variable in cardiovascular function	
	-changes in any variable contributing to mean arterial pressure (eg, a drug-induced increase in peripheral vascular resistance) evoke powerful homeostatic secondary responses	
Homeos- tatic response	may be sufficient to reduce the change in mean arterial pressure and to reverse the drug's effects on heart rate.	
Example: Slow infusion of NE		
Increased bararagentar activity causes the decreased control		

Increased baroreceptor activity causes the *decreased central* sympathetic outflow and *increased vagal outflow*.

Net effect of ordinary pressor doses of norepinephrine in a normal subject is to produce a **marked increase** in *peripheral vascular resistance.*

An increase in mean arterial pressure, and often, a *slowing of heart* rate.

NEGATIVE FEEDBACK RESPONSE is present.

Hmari Cheat Sheet by Sorahae via cheatography.com/176418/cs/36921/

B. Presy	naptic Regulation	C. Postsynaptic	c Regulation (cont)	
Autore- ceptors	Presynaptic receptors that respond to the primary transm- itter substance released by the nerve ending usually inhibitory, but in addition to the excitatory β		ex: Nicotinic receptors are normally restricted to the end plate regions underlying somatic motor nerve terminals.	
Hetero	receptors on noradrenergic fibers, many cholinergic fibers, especially somatic motor fibers, have excitatory nicotinic autoreceptors.		ex: Prolonged administration of large doses of reserpine, a norepinephrine depleter, can cause increased sensitivity of the smooth muscle and cardiac muscle effector cells	
rec- eptors	activated by substances released from other nerve terminals that synapse with the nerve ending.	SECOND MECHANISM	Involves modulation of the primary transmitter-rec- eptor event by events evoked by the same or other transmitters acting on different postsynaptic receptors.	
Dringinlo	of negative feedback control is also found at the presyn-		ex: Ganglionic transmission	
aptic level of autonomic function. -have been shown to exist at most nerve endings		Postganglionic cells are activated (depolarized) due to <i>binding of an appropriate ligand to a neuronal nicotinic (NN) acetylcholine receptor.</i>		
C. Posts	ynaptic Regulation	Resulting:		
Can be 1. Modulation by previous activity at the primary considered receptor		a. Fast excitatory postsynaptic potential (EPSP) evokes a propagated action potential if <i>threshold is reached</i> .		
from two perspect		Continued		
	2. Modulation by other simultaneous events.	-	-	
		b. Often followe	ed by a small and slowly developing but longer-lasting	
FIRST MECHAN	Up-regulation and down-regulation are known to NISM occur in response to decreased or increased activation, respectively, of the receptors.	potential (IPSP		
	Extreme form of up-regulation occurs after denerv- ation of some tissues, resulting in denervation	1. Hyperpolariz cholinoceptors.	ration involves opening of potassium channels by M2	
	<i>supersensitivity of the tissue</i> * to activators of that receptor type.		excitatory postsynaptic potential caused by closure of nnels linked to M1 cholinoceptors.	
		3. Late, very slo other fibers.	ow EPSP may be evoked by peptides released from	

By Sorahae

cheatography.com/sorahae/

Published 6th February, 2023. Last updated 6th February, 2023. Page 6 of 6.