

Calc II Cheat Sheet

by smithandrewa via cheatography.com/71791/cs/18986/

Trig Integrals	
∫sinx dx	= -cosx dx + C
∫cosx dx	= sinx dx + C
\int sec ² x dx	= tanx dx + C
∫tanx dx	= In secx + C
∫secx tanx dx	= secx + C
$\int \csc^2 x \ dx$	= -cotx + C
∫cscx cotx dx	= -cscx + C
∫cotx dx	= In sinx + C

Trig Identities		
$\int (1/x^2 + a^2) dx$	$= 1/a \tan^{-1}(x/a) + C$	
$\int (1/Sqrt(a^2 - x^2) dx$	$= \sin^{-1}(x/a) + C$	
(While a > 0)		

Area Between Curves

Area = ∫[Height] Width

 $A = \int (f(x) - g(x)) dx$

1. Graph Equasions

2. Label

3. Determine how to slice

4. Set up dA

5. dA = height*dx

6. Get range a & b from inters ections

7. Plug in and find area

There is never (-) area.

Volume by Disk

dV = A(x) dx

 $V = \int A(x) dx$

Volume = $\int Radius^2 * Thickness$

 $V = \int (pi(r)^2) dx$

Volume by Washer

dV = A(x) dx

 $V = \int A(x) dx$

Volume = $\int [(pi r out^2) - (pi r in^2)] dx$

Slice Perpendicular to Axis of Rotation

dVolume = Circumference * dArea

dV = (2 pi r) dArea

 $V = \int (2 \text{ pi r}) (Area) dx$

1. Write: dV = 2 pi r dA

2. Find dA(height dx)

3. Find Radius(x or y)

4. Plug in

5. Take integral

Slice Parallel to Axis of Rotation

Average Value of a Function

Average Value = 1/b-a * f(x) dx

Symmetry:

If f(x) is EVEN, then $\int f(x) dx$ from -a to a =

 $2 \int f(x)$ from 0 to a

If f(x) is ODD, then $\int f(x) dx$ from -a to a = 0

Important Integrals

 $\int c f(x) dx = c \int f(x) dx$

 $\int [f(x) + g(x)] dx = \int f(x) dx + \int g(x) dx$

 $\int 1/x \, dx = \ln|x| + C$

 $\int e^{X} dx = e^{X} + C$

 $\int b^{X} dx = (b^{X} / lnb) + C$

Methods of Integration

Trigonometric Substi-

U-Substitution When a Polynomi	ial is $\int (3x + 5)^5$

raised to a power > 1

ntegration by Parts When U-Sub will not

Integration by Parts When U-Sub will not ∫xe^x work

Trigonometric Integr- Only Trig raised to $\int \sin^6 x \cos^3 x dx$

ation powers

3/2 powers or Sqrt(a^2 - x^2)

dx/(x²Sqrt(25-

tution etc. x^2))

U-Substitution

By smithandrewa

Not published yet. Last updated 27th February, 2019. Page 1 of 2. Sponsored by Readable.com Measure your website readability! https://readable.com

cheatography.com/smithandrewa/

Calc II Cheat Sheet

by smithandrewa via cheatography.com/71791/cs/18986/

Integration by Parts

```
Logarithmic
Inverse trig
Algebraic
Trigon ometric
Expone ntial
\int u \ dv = u \ v - \int v \ du
1. Write u \ v - \int v \ du
2. Use LIATE to find u; the other term becomes dV
3. Setup u = dV = du = V = dV
4. Solve
```

Cyclical Functions will need to be split and substituted.

Trigonometric Integration

```
Identities

\sin^2 t + \cos^2 t = 1

\sin^2 t = 1/2 [1-\cos (2t)]

\cos^2 t = 1/2 [1+\cos (2t)]

Can use with U-Subs tit ution
```

Don't change all of the trig to the same form.

Trigonometric Integration

```
Identities

\sin^2 t + \cos^2 t = 1

\sin^2 t = 1/2 [1-\cos (2t)]

\cos^2 t = 1/2 [1+\cos (2t)]

Can use with U-Subs tit ution
```

Don't change all of the trig to the same form.

Trigonometric Substitution

```
Pythag. Identities

\sin^2 + \cos^2 = 1

1 + \tan^2 = \sec^2

1 + \cot^2 = \csc^2

1. Identify a and u

2. Sub in the trig

3. Manipulate to simplify

4. Get rid of trig with a triangle
```


By smithandrewa

Not published yet.
Last updated 27th February, 2019.
Page 2 of 2.

Sponsored by Readable.com

Measure your website readability!

https://readable.com

cheatography.com/smithandrewa/