

Calc II Cheat Sheet

by smithandrewa via cheatography.com/71791/cs/18986/

Trig Integrals	
∫sinx dx	= -cosx dx + C
∫cosx dx	= sinx dx + C
$\int \sec^2 x dx$	= tanx dx + C
∫tanx dx	= In secx + C
∫secx tanx dx	= secx + C
∫csc ² x dx	= -cotx + C
∫cscx cotx dx	= -cscx + C
∫cotx dx	= In sinx + C

Trig Identities		
$\int (1/x^2 + a^2) dx$	= 1/a tan ⁻¹ (x/a) + C	
$\int (1/Sqrt(a^2 - x^2) dx$	$= \sin^{-1}(x/a) + C$	
(While a > 0)		

Area Between Curves

Area = ∫[Height] Width

 $A = \int (f(x) - g(x)] dx$

1. Graph Equasions

2. Label

3. Determine how to slice

4. Set up dA

5. dA = height*dx

6. Get range a & b from inters ections

7. Plug in and find area

There is never (-) area.

Volume by Disk dV = A(x) dx $V = \int A(x) dx$ Volume = $\int Radius^2 * Thickness$

dV = A(x) dx $V = \int A(x) dx$

Volume = $\int [(pi r out^2) - (pi r in^2)] dx$

Slice Perpendicular to Axis of Rotation

$V = \int (pi(r)^2) dx$ Volume by Washer

Not published yet. Last updated 27th February, 2019. Page 1 of 2.

U-Substitution

Sponsored by CrosswordCheats.com Learn to solve cryptic crosswords! http://crosswordcheats.com

Volume by Shell

dVolume = Circumference * dArea

dV = (2 pi r) dArea

 $V = \int (2 \text{ pi r}) (Area) dx$

1. Write: dV = 2 pi r dA

2. Find dA(height dx)

3. Find Radius(x or y)

4. Plug in

5. Take integral

Slice Parallel to Axis of Rotation

Average Value of a Function

Average Value = 1/b-a * f(x) dxSymmetry: If f(x) is EVEN, then $\int f(x) dx$ from -a to a = $2 \int f(x)$ from 0 to a

If f(x) is ODD, then $\int f(x) dx$ from -a to a = 0

Important Integrals		
∫c f(x) dx	$= c \int f(x) dx$	
$\int [f(x) + g(x)] dx$	$= \int f(x) dx + \int g(x) dx$	
$\int 1/x dx$	$= \ln x + C$	
$\int e^{x} dx$	$= e^{X} + C$	
$\int b^{x} dx$	$= (b^X / lnb) + C$	

Methods of Integration				
Method	When to Use	Example		
U-Substitution	When a Polynomial is raised to a power > 1	$\int (3x + 5)^5$		
Integration by Parts	When U-Sub will not work	∫xe ^x		
Trigonometric Integration	Only Trig raised to powers	∫sin ⁶ x cos ³ xdx		
Trigonometric Substitution	$3/2$ powers or $Sqrt(a^2-x^2)$ etc.	$\frac{dx}{(x^2Sqrt(25-x^2))}$		

By smithandrewa

cheatography.com/smithandrewa/

Calc II Cheat Sheet by smithandrewa via cheatography.com/71791/cs/18986/

Integration by Parts

```
Logarithmic
Inverse trig
Algebraic
Trigon ometric
Expone ntial

\int dv = u v - \int v du

1. Write u v - \int v du

2. Use LIATE to find u; the other term becomes dV

3. Setup u= dV= du= V=

4. Solve
```

Cyclical Functions will need to be split and substituted.

Trigonometric Integration

```
Identities

\sin^2 t + \cos^2 t = 1

\sin^2 t = 1/2 [1-\cos (2t)]

\cos^2 t = 1/2 [1+\cos (2t)]

Can use with U-Subs tit ution
```

Don't change all of the trig to the same form.

Trigonometric Integration

```
Identities

\sin^2 t + \cos^2 t = 1

\sin^2 t = 1/2 [1-cos (2t)]

\cos^2 t = 1/2 [1+cos (2t)]

Can use with U-Subs tit ution
```

Don't change all of the trig to the same form.

Trigonometric Substitution

```
Pythag. Identities

\sin^2 + \cos^2 = 1

1 + \tan^2 = \sec^2

1 + \cot^2 = \csc^2

1. Identify a and u

2. Sub in the trig

3. Manipulate to simplify

4. Get rid of trig with a triangle
```


By smithandrewa

Not published yet.

Last updated 27th February, 2019.

Page 2 of 2.

Sponsored by CrosswordCheats.com Learn to solve cryptic crosswords! http://crosswordcheats.com

cheatography.com/smithandrewa/