

Calc II Cheat Sheet

by smithandrewa via cheatography.com/71791/cs/18986/

Trig Integrals		
∫sinx dx	= -cosx dx + C	
∫cosx dx	$= \sin x dx + C$	
$\int sec^2x dx$	= tanx dx + C	
∫tanx dx	= In secx + C	
∫secx tanx dx	= secx + C	
$\int \csc^2 x dx$	= -cotx + C	
∫cscx cotx dx	= -cscx + C	
∫cotx dx	= In sinx + C	

Trig	In	on	TITIOS	
1110	II C	UII		ł

$\int (1/x^2 + a^2) dx$	= 1/a tan ⁻¹ (x/a) + C
$\int (1/Sqrt(a^2 - x^2) dx$	$= \sin^{-1}(x/a) + C$

(While a > 0)

Area Between Curves

Area = ∫[Height] Width

$$A = \int (f(x) - g(x)) dx$$

- 1. Graph Equasions
- 2. Label
- 3. Determine how to slice
- 4. Set up dA
- 5. dA = height*dx
- 6. Get range a & b from inters ections
- 7. Plug in and find area

There is never (-) area.

Volume by Disk

dV = A(x) dx

 $V = \int A(x) dx$

Volume = $\int Radius^2 * Thickness$

 $V = \int (pi(r)^2) dx$

Volume by Washer

dV = A(x) dx

 $V = \int A(x) dx$

Volume = $\int [(pi r out^2) - (pi r in^2)] dx$

Slice Perpendicular to Axis of Rotation

Volume by Shell

dVolume = Circumference * dArea

dV = (2 pi r) dArea

 $V = \int (2 \text{ pi r}) (Area) dx$

1. Write: dV = 2 pi r dA

2. Find dA(height dx)

3. Find Radius(x or y)

4. Plug in

5. Take integral

Slice Parallel to Axis of Rotation

Average Value of a Function

Average Value = 1/b-a * f(x) dx

Symmetry:

If f(x) is EVEN, then $\int f(x) dx$ from -a to a =

 $2 \int f(x)$ from 0 to a

If f(x) is ODD, then $\int f(x) dx$ from -a to a = 0

Important Integrals

 $\int c f(x) dx = c \int f(x) dx$

 $\int [f(x) + g(x)] dx = \int f(x) dx + \int g(x) dx$

 $\int 1/x \, dx = \ln|x| + C$

 $\int e^{X} dx = e^{X} + C$

 $\int b^{X} dx = (b^{X} / lnb) + C$

Methods of Integration

Method	When to Use	Example
U-Substitution	When a Polynomial is raised to a power > 1	$\int (3x + 5)^5$
Integration by Parts	When U-Sub will not work	∫xe ^x
Trigonometric Integration	Only Trig raised to powers	∫sin ⁶ x cos ³ xdx
Trigonometric Substi-	3/2 powers or Sqrt(a ² -x ²)	dx/(x ² Sqrt(25-

etc.

U-Substitution

tution

By smithandrewa

Not published yet. Last updated 27th February, 2019. Page 1 of 2. Sponsored by **Readable.com**Measure your website readability!
https://readable.com

 x^2))

cheatography.com/smithandrewa/

Calc II Cheat Sheet

by smithandrewa via cheatography.com/71791/cs/18986/

Integration by Parts

```
Logarithmic
Inverse trig
Algebraic
Trigon ometric
Expone ntial

\[ \int u \ v - \int v \ du \]

1. Write u v - \int v \ du \]
2. Use LIATE to find u; the other term becomes dV

3. Setup u= dV= du= V=

4. Solve
```

Cyclical Functions will need to be split and substituted.

Trigonometric Integration

```
Identities

\sin^2 t + \cos^2 t = 1

\sin^2 t = 1/2 [1-cos (2t)]

\cos^2 t = 1/2 [1+cos (2t)]

Can use with U-Subs tit ution
```

Don't change all of the trig to the same form.

Trigonometric Integration

```
Identities

\sin^2 t + \cos^2 t = 1

\sin^2 t = 1/2 [1-cos (2t)]

\cos^2 t = 1/2 [1+cos (2t)]

Can use with U-Subs tit ution
```

Don't change all of the trig to the same form.

Trigonometric Substitution

```
Pythag. Identities
\sin^{2} + \cos^{2} = 1
1 + \tan^{2} = \sec^{2}
1 + \cot^{2} = \csc^{2}
1. Identify a and u
2. Sub in the trig
3. Manipulate to simplify
4. Get rid of trig with a triangle
```


By smithandrewa

Not published yet.

Last updated 27th February, 2019.

Page 2 of 2.

Sponsored by Readable.com

Measure your website readability!

https://readable.com

cheatography.com/smithandrewa/