## Cheatography

## Calc II Cheat Sheet

by smithandrewa via cheatography.com/71791/cs/18986/

| Trig Integrals |  |
| :--- | :--- |
| $\int \sin x d x$ | $=-\cos x d x+C$ |
| $\int \cos x d x$ | $=\sin x d x+C$ |
| $\int \sec ^{2} x d x$ | $=\tan x d x+C$ |
| $\int \tan x d x$ | $=\ln \|\sec x\|+C$ |
| $\int \sec x \tan x d x$ | $=\sec x+C$ |
| $\int \csc ^{2} x d x$ | $=-\cot x+C$ |
| $\int \csc x \cot x d x$ | $=-\csc x+C$ |
| $\int \cot x d x$ | $=\ln \|\sin x\|+C$ |


| Trig Identities | $=1 / a \tan ^{-1}(x / a)+C$ |
| :--- | :--- |
| $\int\left(1 / x^{2}+a^{2}\right) d x$ | $=\sin ^{-1}(x / a)+C$ |
| $\int\left(1 /\right.$ Sqrt $\left(a^{2}-x^{2}\right) d x$ |  |
| $($ While $a>0)$ |  |
|  |  |

Area $=\int[$ Height] Width
$A=\int(f(x)-g(x)] d x$

1. Graph Equasions
2. Label
3. Determine how to slice
4. Set up dA
5. $d A=$ height* $d x$
6. Get range $a$ \& $b$ from inters ections
7. Plug in and find area
There is never $(-)$ area.
```
Volume by Disk
dV = A(x) dx
V = \intA (x) dx
Volume = \intRadius }\mp@subsup{}{}{2}* Thicknes
V = \int(pi(r)}\mp@subsup{}{}{2})d
```

```
Volume by Washer
dV = A(x) dx
v = \intA(x) dx
Volume = \int[(pi r out }\mp@subsup{}{}{2})-(\textrm{pi r in}\mp@subsup{}{2}{2})] d
```

Slice Perpendicular to Axis of Rotation

Not published yet. Last updated 27th February, 2019.
Page 1 of 2.

```
Volume by Shell
dVolume = Circumference * dArea
dV = (2 pi r) dArea
V = \int(2 pi r)(Area) dx
1. Write: dV = 2 pi r dA
2. Find dA(height dx)
3. Find Radius(x or y)
4. Plug in
5. Take integral
```

Slice Parallel to Axis of Rotation

```
Average Value of a Function
Average Value = 1/b-a * \intf(x) dx
Symmetry:
If f(x) is EVEN, then }\int\textrm{f}(\textrm{x})\textrm{dx}\mathrm{ from -a to a =
2\intf(x) from 0 to a
If f(x) is ODD, then }\intf(x)dx\mathrm{ from -a to a = 0
```

| Important Integrals |  |
| :--- | :--- |
| $\int c f(x) d x$ | $=c \int f(x) d x$ |
| $\int[f(x)+g(x)] d x$ | $=\int f(x) d x+\int g(x) d x$ |
| $\int 1 / x d x$ | $=\ln \|x\|+C$ |
| $\int e^{x} d x$ | $=e^{x}+C$ |
| $\int b^{x} d x$ |  |
|  | $=\left(b^{x} / \ln b\right)+C$ |


| Methods of Integration |  |  |
| :--- | :--- | :--- |
| Method | When to Use | Example |
| U-Substitution | When a Polynomial is <br> raised to a power $>1$ | $\int(3 x+5)^{5}$ |
| Integration by Parts | When U-Sub will not <br> work | $\int x e^{x}$ |
| Trigonometric Integr- <br> ation | Only Trig raised to <br> powers | $\int \sin ^{6} x \cos ^{3} x d x$ |
| Trigonometric Substi- <br> tution | $3 / 2$ powers or Sqrt $\left(a^{2}-x^{2}\right)$ <br> etc. | $d x /\left(x^{2} S q r t(25-\right.$ <br> $\left.\left.x^{2}\right)\right)$ |

U-Substitution


## By smithandrewa

cheatography.com/smithandrewa/

```
Integration by Parts
Logarithmic
Inverse trig
Algebraic
Trigon ometric
Expone ntial
\intu dv = u v - \intv du
1. Write u v - \intv du
2. Use LIATE to find u; the other term becomes dV
3. Setup u= dV= du= V=
4. Solve
```

Cyclical Functions will need to be split and substituted.

## Trigonometric Integration

```
Identities
sin}\mp@subsup{}{}{2}t+\mp@subsup{\operatorname{cos}}{}{2}t=
sin}\mp@subsup{}{}{2}t=1/2 [1-\operatorname{cos (2t)]
\mp@subsup{cos}{}{2}t=1/2 [1+\operatorname{cos (2t)]}
Can use with U-Subs tit ution
```

Don't change all of the trig to the same form.

```
Trigonometric Integration
```

Identities
$\sin ^{2} t+\cos ^{2} t=1$
$\sin ^{2} t=1 / 2 \quad[1-\cos (2 t)]$
$\cos ^{2} t=1 / 2 \quad[1+\cos (2 t)]$
Can use with U-Subs tit ution

Don't change all of the trig to the same form.

## Trigonometric Substitution

Pythag. Identities
$\sin ^{2}+\cos ^{2}=1$
$1+\tan ^{2}=\sec ^{2}$
$1+\cot ^{2}=\csc ^{2}$

1. Identify a and u
2. Sub in the trig
3. Manipulate to simplify
4. Get rid of trig with a triangle


## By smithandrewa

Not published yet.
Last updated 27th February, 2019.
Page 2 of 2.

Sponsored by CrosswordCheats.com Learn to solve cryptic crosswords! http://crosswordcheats.com

[^0]
[^0]:    cheatography.com/smithandrewa/

