
Good architecture and solution structure Cheat Sheet
by Skepticoder via cheatography.com/144584/cs/31050/

DATABASEDATABASE

Create tables with good names (singular and often similar to domain
model class names)

Use good column names (singular, with only standard abbreviations
in the names

Normalize DB to 3rd normal form

Add foreign key and unique constraints

Use IDENTITY (autogenerated keys) on surrogate key columns

Implement robust cascading update/delete choices on foreign key
constraints for referential integrity

Add good denormalization choices for speeding up working with the
DB

DATA ACCESS LAYERDATA ACCESS LAYER

Add a DAO interface per database table with the CRUD actions
needed

Add a concrete implementation of each DAO interface (preferably in
a package/namespace that designates the persistence layer brand,
i.e. MSSQL, MySQL, Oracle)

Add a DAO factory which can provide instances of the DAO classes
for the controllers through static methods (e.g. public static Cu
stomerDao getCustomerDao())

Add a Datacontext class with a static method which can provide a
Connection object (e.g. getObject() method) for use by the DAO
classes

Add a unique database login (preferable Active Directory account for
Windows authentication or non-SA for SQL logins) with only minimal
permissions necessary (e.g. dbreader/dbwriter) on the relevant
DB/tables

MODEL LAYERMODEL LAYER

Mimic the database tables' structure with regards to naming and data
types (often one model class per table)

Add a good toString() method to your model classes for debugg‐
ing/visualizing object state

Use good encapsulation (especially of collections) so you can
change the underlying data structure without changing the interface

Code good constructors which ensure you can't instantiate objects in
an invalid state

DAO CLASSES SHOULD HAVEDAO CLASSES SHOULD HAVE

DAO CLASSES SHOULD HAVE (cont)DAO CLASSES SHOULD HAVE (cont)

 update(model object)
 delete(model object)

the extra "crud" methods

 `deleteById(int id) (or other name for key column: deleteByAccount‐
Number, etc.) - findByPartOfName(String partOfName) (or other
searchable attribute)

 findByPartOfName(String partOfName) (or other
searchable attribute)

transactions wherever you need to do two or more operations as a
unit: e.g.

 read inventory count and place order if product is available

 move assets (e.g. funds from one account to another)

 update denormalized values (e.g. a numberOfLikes column, which
stores the number of likes in the like table for fast access)

Proper transaction structure with a

 beginTransaction() (C#)/setAutoCommit(false)
(Java)

 commit() at the end of the "try..." which contains the CRUD code

 a rollback() in the "catch..."

 any cleaning up (Connection.setAutoCommit(false), etc.) in the "fin‐
ally..."

Check for the number of rows affected on updates (UPDATE,
INSERT, DELETE) and throw an Exception if necessary with a good
exception message (e.g. "Unknown error. Account number 354 was
not deleted.").

try-catch code which rethrows any exceptions that happen while
interacting with the database, with a message about what was
attempted when the exception happened plus the original exception.

http://www.cheatography.com/
http://www.cheatography.com/skepticoder/
http://www.cheatography.com/skepticoder/cheat-sheets/good-architecture-and-solution-structure

a helper method for converting a single row in a ResultSet to an
object

a helper method which converts an entire ResultSet to a List of
objects reusing the above method

the 5 basic CRUD methods

 getAll()
 getById(int id) (or other name for key column, getBySSN(
ssn), etc.)

 insert(model object)

By SkepticoderSkepticoder

cheatography.com/skepticoder/

Not published yet.
Last updated 6th March, 2022.
Page 1 of 2.

Sponsored by Readable.comReadable.com
Measure your website readability!
https://readable.com

http://www.cheatography.com/skepticoder/
https://readable.com

	Good architecture and solution structure Cheat Sheet - Page 1
	DATABASE
	DATA ACCESS LAYER
	MODEL LAYER
	DAO CLASSES SHOULD HAVE

