Exponential Growth

population of bacteria is known to increase in size by 50% every 2 hours. There are 2000 bacteria in the population at 12 noon
i) the constant of proportionality correct to four decimal places
$\mathrm{k}=0.5 \mathrm{t}=2 \mathrm{a}=2000 \mathrm{a}=200 \mathrm{e}^{\mathrm{kt}}$:
$3000=2000 e^{2(k)}: k=0.2027$
ii) the time when population will
reach 8000

$|$| $a=2000 e^{0.2027 t}$: |
| :--- |
| $8000=2000 e^{0.2027 t}: t=6.84$: |
| after 12 pm |

Binomial Distribution
$E(X)=n p$
$\operatorname{Var}(\mathrm{X})=\mathrm{npq}$

Binomial

Binomial experiment has 7 trials. prob. of successes is 0.4 . what is the probability that:
$X=3$
0.2903 (BinPDF)
X is at least 3
0.58009 (BinCDF)
X is more than 5
(go from 5.5) $=0.018842$

Rate of Change
ROC is modelled by $d / d x=-x^{2}+$ $e^{0.4 x}$, where A is the area, x is the time- days from June 1st. on june 1st there was 6000 m infested
i) the ROC in area on June 5th. ie when $x=4$
$-(4)^{2}+e^{0.4(4)}=-11.047$:
$11 \mathrm{~m} / \mathrm{sq}$
ii) the date when ROC is a minimum
$f(x) 0=2 x+0.4 e^{0.4 x}$ solve: $x=9.7$ $=10$ th June
iii) what is the total change in area infested between June 1st and June 12th inclusive
integral from 0 to 12 of $-x^{2}+$ $e^{0.4 x}=-274.7$ thus decreases
by $275 \mathrm{~m} / \mathrm{sq}$
iv) what is the total area infested by end of june 15th
$6000+$ integral from 0 to 15 of $x^{2}+e^{0.4 x}=5881.1 m / s q$

By simonereneehunter

Not published yet.
Last updated 29th October, 2016.
Page 1 of 1 .

Sponsored by Readability-Score.com
Measure your website readability!
https://readability-score.com
cheatography.com/simonereneehunter/

