\documentclass[10pt,a4paper]{article} % Packages \usepackage{fancyhdr} % For header and footer \usepackage{multicol} % Allows multicols in tables \usepackage{tabularx} % Intelligent column widths \usepackage{tabulary} % Used in header and footer \usepackage{hhline} % Border under tables \usepackage{graphicx} % For images \usepackage{xcolor} % For hex colours %\usepackage[utf8x]{inputenc} % For unicode character support \usepackage[T1]{fontenc} % Without this we get weird character replacements \usepackage{colortbl} % For coloured tables \usepackage{setspace} % For line height \usepackage{lastpage} % Needed for total page number \usepackage{seqsplit} % Splits long words. %\usepackage{opensans} % Can't make this work so far. Shame. Would be lovely. \usepackage[normalem]{ulem} % For underlining links % Most of the following are not required for the majority % of cheat sheets but are needed for some symbol support. \usepackage{amsmath} % Symbols \usepackage{MnSymbol} % Symbols \usepackage{wasysym} % Symbols %\usepackage[english,german,french,spanish,italian]{babel} % Languages % Document Info \author{geminifourth04 (shreyasree)} \pdfinfo{ /Title (chemical-bonding-a-level-h2.pdf) /Creator (Cheatography) /Author (geminifourth04 (shreyasree)) /Subject (Chemical Bonding (A level) - H2 Cheat Sheet) } % Lengths and widths \addtolength{\textwidth}{6cm} \addtolength{\textheight}{-1cm} \addtolength{\hoffset}{-3cm} \addtolength{\voffset}{-2cm} \setlength{\tabcolsep}{0.2cm} % Space between columns \setlength{\headsep}{-12pt} % Reduce space between header and content \setlength{\headheight}{85pt} % If less, LaTeX automatically increases it \renewcommand{\footrulewidth}{0pt} % Remove footer line \renewcommand{\headrulewidth}{0pt} % Remove header line \renewcommand{\seqinsert}{\ifmmode\allowbreak\else\-\fi} % Hyphens in seqsplit % This two commands together give roughly % the right line height in the tables \renewcommand{\arraystretch}{1.3} \onehalfspacing % Commands \newcommand{\SetRowColor}[1]{\noalign{\gdef\RowColorName{#1}}\rowcolor{\RowColorName}} % Shortcut for row colour \newcommand{\mymulticolumn}[3]{\multicolumn{#1}{>{\columncolor{\RowColorName}}#2}{#3}} % For coloured multi-cols \newcolumntype{x}[1]{>{\raggedright}p{#1}} % New column types for ragged-right paragraph columns \newcommand{\tn}{\tabularnewline} % Required as custom column type in use % Font and Colours \definecolor{HeadBackground}{HTML}{333333} \definecolor{FootBackground}{HTML}{666666} \definecolor{TextColor}{HTML}{333333} \definecolor{DarkBackground}{HTML}{A3A3A3} \definecolor{LightBackground}{HTML}{F3F3F3} \renewcommand{\familydefault}{\sfdefault} \color{TextColor} % Header and Footer \pagestyle{fancy} \fancyhead{} % Set header to blank \fancyfoot{} % Set footer to blank \fancyhead[L]{ \noindent \begin{multicols}{3} \begin{tabulary}{5.8cm}{C} \SetRowColor{DarkBackground} \vspace{-7pt} {\parbox{\dimexpr\textwidth-2\fboxsep\relax}{\noindent \hspace*{-6pt}\includegraphics[width=5.8cm]{/web/www.cheatography.com/public/images/cheatography_logo.pdf}} } \end{tabulary} \columnbreak \begin{tabulary}{11cm}{L} \vspace{-2pt}\large{\bf{\textcolor{DarkBackground}{\textrm{Chemical Bonding (A level) - H2 Cheat Sheet}}}} \\ \normalsize{by \textcolor{DarkBackground}{geminifourth04 (shreyasree)} via \textcolor{DarkBackground}{\uline{cheatography.com/184627/cs/42734/}}} \end{tabulary} \end{multicols}} \fancyfoot[L]{ \footnotesize \noindent \begin{multicols}{3} \begin{tabulary}{5.8cm}{LL} \SetRowColor{FootBackground} \mymulticolumn{2}{p{5.377cm}}{\bf\textcolor{white}{Cheatographer}} \\ \vspace{-2pt}geminifourth04 (shreyasree) \\ \uline{cheatography.com/shreyasree} \\ \end{tabulary} \vfill \columnbreak \begin{tabulary}{5.8cm}{L} \SetRowColor{FootBackground} \mymulticolumn{1}{p{5.377cm}}{\bf\textcolor{white}{Cheat Sheet}} \\ \vspace{-2pt}Not Yet Published.\\ Updated 15th March, 2024.\\ Page {\thepage} of \pageref{LastPage}. \end{tabulary} \vfill \columnbreak \begin{tabulary}{5.8cm}{L} \SetRowColor{FootBackground} \mymulticolumn{1}{p{5.377cm}}{\bf\textcolor{white}{Sponsor}} \\ \SetRowColor{white} \vspace{-5pt} %\includegraphics[width=48px,height=48px]{dave.jpeg} Measure your website readability!\\ www.readability-score.com \end{tabulary} \end{multicols}} \begin{document} \raggedright \raggedcolumns % Set font size to small. Switch to any value % from this page to resize cheat sheet text: % www.emerson.emory.edu/services/latex/latex_169.html \footnotesize % Small font. \begin{multicols*}{3} \begin{tabularx}{5.377cm}{x{2.4885 cm} x{2.4885 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{5.377cm}}{\bf\textcolor{white}{Covalent Bond}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{2}{x{5.377cm}}{Definition: strong electrostatic attraction between positive nuclei of 2 atoms and bonding electrons shared between them} \tn % Row Count 3 (+ 3) % Row 1 \SetRowColor{white} \mymulticolumn{2}{x{5.377cm}}{Properties: bond is formed by the sharing of electrons. electronegativity difference between both atoms in the covalent compound is small (\textless{}1.6)} \tn % Row Count 6 (+ 3) % Row 2 \SetRowColor{LightBackground} \mymulticolumn{2}{x{5.377cm}}{formation of a covalent bond involves the overlapping of valence orbitals of the atoms. different ways of overlapping results in different types of bonds (namely sigma and pi bond)} \tn % Row Count 10 (+ 4) % Row 3 \SetRowColor{white} {\bf{head on overlap}} of s orbitals/p orbitals/ s and p orbital results in the formation of a {\bf{sigma bond}}. electrons are concentrated {\bf{ between the nuclei of the bonding atoms}} & when 2 {\bf{ p orbitals}} that are {\bf{ parallel }} to each other {\bf{overlap sideways }}, this forms a {\bf{pi bond}}. electrons are concentrated {\bf{above and below the plane of the nuclei of the bonding atoms}} \tn % Row Count 21 (+ 11) % Row 4 \SetRowColor{LightBackground} \mymulticolumn{2}{x{5.377cm}}{pi bond is {\bf{weaker}} than a sigma bond/ in all multiple bonds,{\bf{ only 1 bond}} will be a sigma bond and the rest will be pi bonds} \tn % Row Count 24 (+ 3) % Row 5 \SetRowColor{white} \mymulticolumn{2}{x{5.377cm}}{the relative weakness of pi bonds compared to sigma bonds is due to their lesser extent of overlap between atomic orbitals, more diffuse electron density, and increased exposure to the surrounding environment.} \tn % Row Count 29 (+ 5) \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{p{0.4977 cm} p{0.4977 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{5.377cm}}{\bf\textcolor{white}{Dative Covalent Bond}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{2}{x{5.377cm}}{bond formed when only one atom contributes the two bonding electrons} \tn % Row Count 2 (+ 2) % Row 1 \SetRowColor{white} \mymulticolumn{2}{x{5.377cm}}{involves 1 electron donor (have at least an extra lone pair of electrons to donate) and 1 electron acceptor (have at least an empty orbital to accept the electron pair} \tn % Row Count 6 (+ 4) % Row 2 \SetRowColor{LightBackground} \mymulticolumn{2}{x{5.377cm}}{represented as A:-\textgreater{}B(A donated the electrons and B accepted them)} \tn % Row Count 8 (+ 2) % Row 3 \SetRowColor{white} \mymulticolumn{2}{x{5.377cm}}{common example: dimerisation of aluminium chloride} \tn % Row Count 9 (+ 1) \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Dimerisation of AlCl3 ( aluminium chloride)}} \tn \SetRowColor{LightBackground} \mymulticolumn{1}{p{5.377cm}}{\vspace{1px}\centerline{\includegraphics[width=5.1cm]{/web/www.cheatography.com/public/uploads/shreyasree_1710488757_22pp4.png}}} \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{p{0.4977 cm} p{0.4977 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{5.377cm}}{\bf\textcolor{white}{Bond polarity}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{2}{x{5.377cm}}{describes how electrons are shared between atoms in a covalent bond (shifting of the electron cloud)} \tn % Row Count 2 (+ 2) % Row 1 \SetRowColor{white} \mymulticolumn{2}{x{5.377cm}}{non-polar bonds (X-X,C-H,P-H) : negligible difference in electronegativity, electron cloud shared equally} \tn % Row Count 5 (+ 3) % Row 2 \SetRowColor{LightBackground} \mymulticolumn{2}{x{5.377cm}}{polar bond: atoms have relatively different electronegativities. The more electronegative atom will attract the shared paired electrons towards itself more than the less electronegative atom. electron cloud will shift towards the more electronegative atom} \tn % Row Count 11 (+ 6) % Row 3 \SetRowColor{white} \mymulticolumn{2}{x{5.377cm}}{polarisation: seperation of positive and negative charges ( in a polar bond, the more electronegative atom will have a partially negative charge whereas the less electronegative atom will have a partially positive charge} \tn % Row Count 16 (+ 5) % Row 4 \SetRowColor{LightBackground} \mymulticolumn{2}{x{5.377cm}}{compounds with this type of covalent bond are said to behave ionically} \tn % Row Count 18 (+ 2) % Row 5 \SetRowColor{white} \mymulticolumn{2}{x{5.377cm}}{dipole moment (indicate difference between electronegativities of the atoms bonded together (arrow points from PP to PN)} \tn % Row Count 21 (+ 3) \hhline{>{\arrayrulecolor{DarkBackground}}--} \SetRowColor{LightBackground} \mymulticolumn{2}{x{5.377cm}}{partially negative charge is not the same as negative charge (each used for different types of bonding)} \tn \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{p{0.4977 cm} p{0.4977 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{5.377cm}}{\bf\textcolor{white}{Strength of a covalent bond}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{2}{x{5.377cm}}{the more the bond energy, the stronger the covalent bond} \tn % Row Count 2 (+ 2) % Row 1 \SetRowColor{white} \mymulticolumn{2}{x{5.377cm}}{bond energy: the energy absorbed when a mole of a particular covalent bond between 2 atoms in the gaseous state is broken} \tn % Row Count 5 (+ 3) % Row 2 \SetRowColor{LightBackground} \mymulticolumn{2}{x{5.377cm}}{factors affecting bond energy: bond order, bond length} \tn % Row Count 7 (+ 2) % Row 3 \SetRowColor{white} \mymulticolumn{2}{x{5.377cm}}{bond order: number of covalent bonds between 2 atoms (as bond order increases, bond energy increases, the more stronger the bond)} \tn % Row Count 10 (+ 3) % Row 4 \SetRowColor{LightBackground} \mymulticolumn{2}{x{5.377cm}}{bond length: distance between the nuclei of the bonded atoms (as the radius of the bonded atoms increases, bond length increases, bond energy decreases, the weaker the bond} \tn % Row Count 14 (+ 4) \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{p{0.4977 cm} p{0.4977 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{5.377cm}}{\bf\textcolor{white}{Covalent Compounds}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{2}{x{5.377cm}}{most covalent compounds have a simple molecular structure, whereas some covalent compounds (diamond, graphite, silicon, SiO2) have a giant covalent structure} \tn % Row Count 4 (+ 4) % Row 1 \SetRowColor{white} \mymulticolumn{2}{x{5.377cm}}{simple molecular structure: strong covalent bonds between atoms, weak intermolecular forces between molecules. covalent compounds with this type of structure exist as simple discrete molecules} \tn % Row Count 8 (+ 4) % Row 2 \SetRowColor{LightBackground} \mymulticolumn{2}{x{5.377cm}}{giant covalent compounds: strong covalent bonds between atoms. These strong covalent bonds {\bf{ exists extensively throughout}} the structure} \tn % Row Count 11 (+ 3) \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{p{0.4977 cm} p{0.4977 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{5.377cm}}{\bf\textcolor{white}{Diamond}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{2}{x{5.377cm}}{C atoms are arranged tetrahedrally, where 1 C atom uses all its 4 valence electrons to form 4 single covalent bonds with 4 other C atoms} \tn % Row Count 3 (+ 3) % Row 1 \SetRowColor{white} \mymulticolumn{2}{x{5.377cm}}{very hard due to C atoms being held in a fixed tetrahedral arramgement with strong covalent bonds between C atoms} \tn % Row Count 6 (+ 3) % Row 2 \SetRowColor{LightBackground} \mymulticolumn{2}{x{5.377cm}}{poor electrical conductor as each C atom is fully bonded to 4 other C atoms covalently (localised in the covalent bonds), leaving behind no delocalised electrons to carry charge} \tn % Row Count 10 (+ 4) % Row 3 \SetRowColor{white} \mymulticolumn{2}{x{5.377cm}}{insoluble as a lot of energy is required to overcome the strong covalent bonds between atoms} \tn % Row Count 12 (+ 2) % Row 4 \SetRowColor{LightBackground} \mymulticolumn{2}{x{5.377cm}}{high mp/bp: a lot of energy required to overcome strong covalent bonds between atoms} \tn % Row Count 14 (+ 2) \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{p{0.4977 cm} p{0.4977 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{5.377cm}}{\bf\textcolor{white}{Graphite}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{2}{x{5.377cm}}{C atoms are hexagonally arranged in flat parallel layers. weak instantaneous dipole-induced dipole attraction between parallel hexagonal layers} \tn % Row Count 3 (+ 3) % Row 1 \SetRowColor{white} \mymulticolumn{2}{x{5.377cm}}{Each C atom uses only 3 valence electrons to form 3 single covalent bonds with only 3 other C atoms. the fourth valence electron from each C atom is delocalised over all C atoms in the same layer} \tn % Row Count 7 (+ 4) % Row 2 \SetRowColor{LightBackground} \mymulticolumn{2}{x{5.377cm}}{good electrical conductivity {\bf{ in the direction parallel to the hexagonal layers of C atoms }} -\textgreater{} delocalised electrons along the layer can carry charge} \tn % Row Count 11 (+ 4) % Row 3 \SetRowColor{white} \mymulticolumn{2}{x{5.377cm}}{insoluble as a lot of energy is required to overcome the strong covalent bonds between atoms} \tn % Row Count 13 (+ 2) % Row 4 \SetRowColor{LightBackground} \mymulticolumn{2}{x{5.377cm}}{high mp/bp: a lot of energy required to overcome strong covalent bonds between atoms} \tn % Row Count 15 (+ 2) % Row 5 \SetRowColor{white} \mymulticolumn{2}{x{5.377cm}}{soft: hexagonal layers are held by weak instantaneous dipole-induced dipole attraction -\textgreater{} weak enough to allow the layers to slide over one another(graphite is used as a lubricant)} \tn % Row Count 19 (+ 4) \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{p{0.4977 cm} p{0.4977 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{5.377cm}}{\bf\textcolor{white}{Silicon}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{2}{x{5.377cm}}{each Si atom forms 4 single covalent bonds with 4 other Si atoms in a tetrahedral arrangement} \tn % Row Count 2 (+ 2) % Row 1 \SetRowColor{white} \mymulticolumn{2}{x{5.377cm}}{silicon is a semiconductor : Electricity does not conduct in this pure monocrystalline silicon, when silicon is doped with impurities it becomes conductive. But silicon does not have conductivity comparable to conductors, it is very less but much more than that of insulators which is why it is called a semiconductor.} \tn % Row Count 9 (+ 7) \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{p{0.4977 cm} p{0.4977 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{5.377cm}}{\bf\textcolor{white}{SiO2 (Silicon Dioxide)}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{2}{x{5.377cm}}{Each Si atom forms 4 single covalent bonds with 4 oxygen atoms in tetrahedral arrangement. Each O atom forms 2 single covalent bonds with 4 O atoms} \tn % Row Count 3 (+ 3) % Row 1 \SetRowColor{white} \mymulticolumn{2}{x{5.377cm}}{Each O atom forms 2 single covalent bonds with 2 Si atoms} \tn % Row Count 5 (+ 2) % Row 2 \SetRowColor{LightBackground} \mymulticolumn{2}{x{5.377cm}}{Hence the ratio of Si:O -\textgreater{} 1:2} \tn % Row Count 6 (+ 1) % Row 3 \SetRowColor{white} \mymulticolumn{2}{x{5.377cm}}{poor conductor of electricity, high mp} \tn % Row Count 7 (+ 1) % Row 4 \SetRowColor{LightBackground} \mymulticolumn{2}{x{5.377cm}}{crystallized: quartz/ impure : sand} \tn % Row Count 8 (+ 1) \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{p{0.4977 cm} p{0.4977 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{5.377cm}}{\bf\textcolor{white}{Simple Molecular structure}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{2}{x{5.377cm}}{most covalent compounds have a simple molecular structure} \tn % Row Count 2 (+ 2) % Row 1 \SetRowColor{white} \mymulticolumn{2}{x{5.377cm}}{hence most covalent compounds exist as simple discrete molecules} \tn % Row Count 4 (+ 2) % Row 2 \SetRowColor{LightBackground} \mymulticolumn{2}{x{5.377cm}}{strong covalent bonds between atoms, weak intermolecular force between molecules (when heat is supplied, imf is overcome before covalent bonds)} \tn % Row Count 7 (+ 3) % Row 3 \SetRowColor{white} \mymulticolumn{2}{x{5.377cm}}{low mp/bp: little energy required to overcome weak intermolecular forces of attraction between molecules} \tn % Row Count 10 (+ 3) % Row 4 \SetRowColor{LightBackground} \mymulticolumn{2}{x{5.377cm}}{poor electrical conductivity: there are no mobile charge carriers (delocalised electrons) present in simple covalent molecules in all states} \tn % Row Count 13 (+ 3) % Row 5 \SetRowColor{white} \mymulticolumn{2}{x{5.377cm}}{{\bf{exception: some polar molecules such as HCl may dissociate in water to form H+ and Cl- ions (polar molecules behave ionically)}}} \tn % Row Count 16 (+ 3) % Row 6 \SetRowColor{LightBackground} \mymulticolumn{2}{x{5.377cm}}{solubility: polar molecules are soluble in polar solvents/ non polar molecules are soluble in non polar solvents} \tn % Row Count 19 (+ 3) \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} % That's all folks \end{multicols*} \end{document}