

# Ecology Exam 1 Cheat Sheet by Shelbeans (shelbeans) via cheatography.com/177819/cs/44322/

#### Definitions

#### **Ecology**

The scientific study of the interations amoung organisms and the environment

#### **Biotic**

living (procuders, reducers)

#### Abiotic

nonliving (air, energy)

#### Environmentalism

The study of **ecological problems** in the **human context** (economics, morals)

#### Dynamic steady state

occurs when gains and losses are in balence (matter and energy)

#### **Species Interactios**

Predation an organism kills and consumes another

Parasitism one organism lives in or on

another

Competition when 2 organisms have

negative effect on each other because they depend on the same resource

Mutualism when 2 species benifit from

each other

Commen- when 2 species live closely,

one benifts but the other is

unaffected

Amensalism when 2 specise living close

to e ach other, one is negatively affected, but the other is unaffected

## Solar Energy Terms

salism

Electromagnetic Radiation

Energy from the Sun; packed in particles called photons

Photosynthetically active region

wavelengths of light that are suitable for photosysnthesis **400 nm** (Violet) to **700 nm**(red)

## Solar Energy Terms (cont)

## Chloroplasts

specialized cell organelles. Chlorophylls are pigments that absorb the light.

### Light Reactions

convert energy from **photons** into **chemical energy** 

#### **Dark Reactions**

aka Calvin cycle, use **chemical energy** and **CO2** to make \*\*sugar

#### Photorespiration

RuBP combines with a molecule of O2, resulting in CO2 and loss of energy. reverses the gains made by photosynthesis

## C3 Photosynthesis

CO2 + RuBP -> 2 G3P

- -catalized by RuBP
- -Disadvantages: they need a large amount of Rubisco, and need a lot of O2

\_

## **Heat Gain and Loss Terms**

#### Radiation

the emmision of electromagnetic energy by a surface

## Conduction

the transfer of the kinetic energy of heat between substances in contact

#### Convection

the transfer of heat by movement of liquidds and gases

#### Evaporation

water goes from liquid to gas. removes heat from a surface

large organisms lose and gain heat

**less rapidly** than smaller organisms due to surface area

## When temps vary

Not published yet.

it is **easier** for a lerge animal to maintain a constant internal temperature

## Heat Gain and Loss Terms (cont)

#### Thermal Inertia

the resistance to a change in temp due to a large body volume

## Organization in Ecology

individual =>population =>community =>e-cosystem =>landscape =>biosphere

### Individual approach

understands how **adaptations** enable it to survive

## Population approach

examines **variation** in the number, density, and composition of individuals

#### Community approach

understands **diversity and interactions** of organisms living in the same place

## Ecosystem approach

describes the **storage** and **transfer** on energy and matter

### Biosphere approach

Examines movements of energy and chemicals over the earths surface

#### **Habitat and Niche**

## Habitat

place or physical setting in which organism lives

## Examples

freshwater, coastal, forests, deserts

#### Niche

range of conditions tolerated, resources required. No 2 species have the same niche

## Examples

different insects prefer to feed on different plants that might be in the same field

## Thermal Optima

Thermal the temperature in which an Optima organism best performs

Sponsored by Readable.com

https://readable.com

Measure your website readability!

Last updated 8th September, 2024. Page 1 of 2.

By Shelbeans (shelbeans) cheatography.com/shelbeans/



# Ecology Exam 1 Cheat Sheet by Shelbeans (shelbeans) via cheatography.com/177819/cs/44322/

## Thermal Optima (cont)

Its determined by e.g. enzymes and the properties of an lipids, body form, organism cells and tissues e.g. Coral Bleaching Temps that exceed thermal optima can hurt

## Photorespiration

- -Reverses the gains made by photosynt-
- -catalized by Rubisco
- -becomes more problematic in hot and dry conditions
- -Rubisco has a greater tendency to react with O2 when O2 concentration is high, CO2 concentration is low, or temperature is high
- -when its hot or dry, stomata will partially close and CO2 concentrations in leaves will be low

## C4 Photosynthesis

- -adds a more efficient enzyme CO2 + PEP -> OAA
- -adds a CO2 concentrating mechanism
- -disadvantages:less tissue is used for photosynthesis. energy needed for the CO2
- -C4 plants are more active at hot times of the year
- -C4 grasses occur primarily in warm climates

## **CAM Photosynthesis**

| CAM     | a pathway in which the initial   |
|---------|----------------------------------|
| photos  | assimilation of carbon into OAA  |
| ythesis | occurs at night                  |
| like C4 | CAM plants are better adapted to |
| plants  | warm                             |

## Themoregulation

Thermothe ability of an organism to regulation control their body temp

|  | Homeot-            | organisms that maintain                                                   |
|--|--------------------|---------------------------------------------------------------------------|
|  | herms              | constant temp. allows                                                     |
|  |                    | biochemical reactions to                                                  |
|  |                    | work most efficently                                                      |
|  |                    | (humans)                                                                  |
|  | Poikil-<br>otherms | organisms that do not have ocnstant body temperature (reptiles)           |
|  | Endotherms         | Organisms that can generate metabolic heat to raise body temp             |
|  |                    | mammels and birds,<br>requires alot of work and<br>energy                 |
|  | Ectotherms         | Organims with body tempsd-<br>etermined by their external<br>environments |

Reptiles, amphibians,

insects, tend to be smaller.

## Food Chain

| Producers        | (autotrophs) convert light/-<br>chemical energy into<br>resources      |
|------------------|------------------------------------------------------------------------|
| Consumers        | (heterotrophs) obtain their energy from other organisms                |
| Mixotroph        | can switch between producers and consumers                             |
| Scavengers       | consume dead animals                                                   |
| Detritivores     | break down dead organic<br>matter (detritus) into smaller<br>particles |
| Decomp-<br>osers | break down detritus into simpler elements that can be                  |

## Salt Balance in Aquatic Animal

recycled

a substance dissolved in water. Always different than the concen-

| Salt Balance i                  | in Aquatic Animal (cont)                                                                                  |
|---------------------------------|-----------------------------------------------------------------------------------------------------------|
| Semipe-<br>rmeable<br>Membranes | membranes that allow only<br>particular molecules to pass<br>thorugh. Reduces free<br>movement of solutes |
| Osmosis                         | net movement of water<br>across a semipermeable<br>membrane, towards a higher<br>solute concentration     |
| Osmotic<br>Potential            | the force with which a solution attracts water by osmosis. expressed in pressure units (MPa)              |
| Osmoregul-<br>ation             | mechanims organisms use to maintain a proper solute balance                                               |
| Hypero-<br>smotic               | tissue solute concentrations are <b>higher</b> than surrounding water                                     |
|                                 | Freshwater Fish                                                                                           |
| Hyposmotic                      | tissue solute concentrations are <b>lower</b> than surrounding water                                      |
|                                 | Saltwater Fish                                                                                            |
| Salt Balance in mangroves       | mangrove roots are in salt<br>water, so its hard to take up<br>the water with a high salt                 |

load. they have developed specal salt glands on leaves,

their cells maintain high

the water

sugar, and roots exclude salt

by active transport back into

tration in the surrounding water.



By Shelbeans (shelbeans) cheatography.com/shelbeans/

Not published yet. Last updated 8th September, 2024. Page 2 of 2.

Sponsored by Readable.com Measure your website readability!

https://readable.com