\documentclass[10pt,a4paper]{article} % Packages \usepackage{fancyhdr} % For header and footer \usepackage{multicol} % Allows multicols in tables \usepackage{tabularx} % Intelligent column widths \usepackage{tabulary} % Used in header and footer \usepackage{hhline} % Border under tables \usepackage{graphicx} % For images \usepackage{xcolor} % For hex colours %\usepackage[utf8x]{inputenc} % For unicode character support \usepackage[T1]{fontenc} % Without this we get weird character replacements \usepackage{colortbl} % For coloured tables \usepackage{setspace} % For line height \usepackage{lastpage} % Needed for total page number \usepackage{seqsplit} % Splits long words. %\usepackage{opensans} % Can't make this work so far. Shame. Would be lovely. \usepackage[normalem]{ulem} % For underlining links % Most of the following are not required for the majority % of cheat sheets but are needed for some symbol support. \usepackage{amsmath} % Symbols \usepackage{MnSymbol} % Symbols \usepackage{wasysym} % Symbols %\usepackage[english,german,french,spanish,italian]{babel} % Languages % Document Info \author{shaylannxd} \pdfinfo{ /Title (liquid-chromatography.pdf) /Creator (Cheatography) /Author (shaylannxd) /Subject (Liquid Chromatography Cheat Sheet) } % Lengths and widths \addtolength{\textwidth}{6cm} \addtolength{\textheight}{-1cm} \addtolength{\hoffset}{-3cm} \addtolength{\voffset}{-2cm} \setlength{\tabcolsep}{0.2cm} % Space between columns \setlength{\headsep}{-12pt} % Reduce space between header and content \setlength{\headheight}{85pt} % If less, LaTeX automatically increases it \renewcommand{\footrulewidth}{0pt} % Remove footer line \renewcommand{\headrulewidth}{0pt} % Remove header line \renewcommand{\seqinsert}{\ifmmode\allowbreak\else\-\fi} % Hyphens in seqsplit % This two commands together give roughly % the right line height in the tables \renewcommand{\arraystretch}{1.3} \onehalfspacing % Commands \newcommand{\SetRowColor}[1]{\noalign{\gdef\RowColorName{#1}}\rowcolor{\RowColorName}} % Shortcut for row colour \newcommand{\mymulticolumn}[3]{\multicolumn{#1}{>{\columncolor{\RowColorName}}#2}{#3}} % For coloured multi-cols \newcolumntype{x}[1]{>{\raggedright}p{#1}} % New column types for ragged-right paragraph columns \newcommand{\tn}{\tabularnewline} % Required as custom column type in use % Font and Colours \definecolor{HeadBackground}{HTML}{333333} \definecolor{FootBackground}{HTML}{666666} \definecolor{TextColor}{HTML}{333333} \definecolor{DarkBackground}{HTML}{8D0AFF} \definecolor{LightBackground}{HTML}{F7EFFF} \renewcommand{\familydefault}{\sfdefault} \color{TextColor} % Header and Footer \pagestyle{fancy} \fancyhead{} % Set header to blank \fancyfoot{} % Set footer to blank \fancyhead[L]{ \noindent \begin{multicols}{3} \begin{tabulary}{5.8cm}{C} \SetRowColor{DarkBackground} \vspace{-7pt} {\parbox{\dimexpr\textwidth-2\fboxsep\relax}{\noindent \hspace*{-6pt}\includegraphics[width=5.8cm]{/web/www.cheatography.com/public/images/cheatography_logo.pdf}} } \end{tabulary} \columnbreak \begin{tabulary}{11cm}{L} \vspace{-2pt}\large{\bf{\textcolor{DarkBackground}{\textrm{Liquid Chromatography Cheat Sheet}}}} \\ \normalsize{by \textcolor{DarkBackground}{shaylannxd} via \textcolor{DarkBackground}{\uline{cheatography.com/149855/cs/32584/}}} \end{tabulary} \end{multicols}} \fancyfoot[L]{ \footnotesize \noindent \begin{multicols}{3} \begin{tabulary}{5.8cm}{LL} \SetRowColor{FootBackground} \mymulticolumn{2}{p{5.377cm}}{\bf\textcolor{white}{Cheatographer}} \\ \vspace{-2pt}shaylannxd \\ \uline{cheatography.com/shaylannxd} \\ \end{tabulary} \vfill \columnbreak \begin{tabulary}{5.8cm}{L} \SetRowColor{FootBackground} \mymulticolumn{1}{p{5.377cm}}{\bf\textcolor{white}{Cheat Sheet}} \\ \vspace{-2pt}Not Yet Published.\\ Updated 20th June, 2022.\\ Page {\thepage} of \pageref{LastPage}. \end{tabulary} \vfill \columnbreak \begin{tabulary}{5.8cm}{L} \SetRowColor{FootBackground} \mymulticolumn{1}{p{5.377cm}}{\bf\textcolor{white}{Sponsor}} \\ \SetRowColor{white} \vspace{-5pt} %\includegraphics[width=48px,height=48px]{dave.jpeg} Measure your website readability!\\ www.readability-score.com \end{tabulary} \end{multicols}} \begin{document} \raggedright \raggedcolumns % Set font size to small. Switch to any value % from this page to resize cheat sheet text: % www.emerson.emory.edu/services/latex/latex_169.html \footnotesize % Small font. \begin{multicols*}{2} \begin{tabularx}{8.4cm}{x{3.04 cm} x{4.96 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{8.4cm}}{\bf\textcolor{white}{Basic Theory}} \tn % Row 0 \SetRowColor{LightBackground} {\bf{Liquid Chromatography}} & MP \{\{fa-arrow-right\}\} Liquid \{\{nl\}\}\{\{fa-caret-right\}\} Actively participate in equilibrium process \tn % Row Count 5 (+ 5) % Row 1 \SetRowColor{white} & SP \{\{fa-arrow-right\}\} Quasi/porous solid \{\{nl\}\}\{\{fa-caret-right\}\}Most common do reverse-phase chromatography SP \{\{nl\}\}\{\{fa-caret-right\}\} Film thickness \{\{fa-arrow-right\}\} Very small (monolayer) \tn % Row Count 14 (+ 9) % Row 2 \SetRowColor{LightBackground} & D`m` \textasciitilde{} 10D`s`\{\{nl\}\}\{\{fa-caret-right\}\} B/U \textasciitilde{} 0 \tn % Row Count 16 (+ 2) % Row 3 \SetRowColor{white} & d`f` \textasciitilde{} 0 \{\{nl\}\}\{\{fa-caret-right\}\} C`s`U \textasciitilde{} 0 \tn % Row Count 18 (+ 2) % Row 4 \SetRowColor{LightBackground} & Always carried-out in packed columns \tn % Row Count 20 (+ 2) % Row 5 \SetRowColor{white} {\bf{Advantage}} & More versatile than GC \tn % Row Count 21 (+ 1) % Row 6 \SetRowColor{LightBackground} & Adaptable to needs \tn % Row Count 22 (+ 1) % Row 7 \SetRowColor{white} {\bf{Disadvantage}} & Much less efficient than GC \tn % Row Count 24 (+ 2) % Row 8 \SetRowColor{LightBackground} & Diffusion coefficient of analyte is orders of magnitude smaller than in GC \{\{nl\}\}\{\{fa-caret-right\}\} Bounced into other molecules \{\{fa-arrow-right\}\}Diffusion rate is small \tn % Row Count 32 (+ 8) \end{tabularx} \par\addvspace{1.3em} \vfill \columnbreak \begin{tabularx}{8.4cm}{x{3.04 cm} x{4.96 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{8.4cm}}{\bf\textcolor{white}{Basic Theory (cont)}} \tn % Row 9 \SetRowColor{LightBackground} & In liquid phase (not gas) \tn % Row Count 2 (+ 2) % Row 10 \SetRowColor{white} {\bf{Improve efficiency}} & Use small particle \{\{fa-arrow-right\}\} Narrow range velocity \{\{nl\}\}\{\{fa-caret-right\}\} Dependent on particle diameter (d`p`) \{\{nl\}\}\{\{fa-caret-right\}\}Smaller particle size = smaller plate height at any given velocity \tn % Row Count 11 (+ 9) % Row 11 \SetRowColor{LightBackground} & Compensate for travel distance of analyte to reach surface of SP \{\{nl\}\}\{\{fa-caret-right\}\}Minimize the space between the particles that the analyte have to diffuse across \tn % Row Count 19 (+ 8) % Row 12 \SetRowColor{white} & Analytical LC \{\{fa-arrow-right\}\} \textless{} 5μm \tn % Row Count 21 (+ 2) % Row 13 \SetRowColor{LightBackground} & HPLC \{\{fa-arrow-right\}\} \textgreater{}3μm \tn % Row Count 23 (+ 2) % Row 14 \SetRowColor{white} & UHPLC \{\{fa-arrow-right\}\} \textless{} 3μm \tn % Row Count 25 (+ 2) \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{8.4cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{8.4cm}}{\bf\textcolor{white}{Theory Equations}} \tn \SetRowColor{LightBackground} \mymulticolumn{1}{p{8.4cm}}{\vspace{1px}\centerline{\includegraphics[width=5.1cm]{/web/www.cheatography.com/public/uploads/shaylannxd_1655354490_Capturef.JPG}}} \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{8.4cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{8.4cm}}{\bf\textcolor{white}{LC Velocity Range}} \tn \SetRowColor{LightBackground} \mymulticolumn{1}{p{8.4cm}}{\vspace{1px}\centerline{\includegraphics[width=5.1cm]{/web/www.cheatography.com/public/uploads/shaylannxd_1655354648_a.JPG}}} \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{8.4cm}{x{2.4 cm} x{5.6 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{8.4cm}}{\bf\textcolor{white}{Column}} \tn % Row 0 \SetRowColor{LightBackground} {\bf{Packed Column}} & Packed full of particles \tn % Row Count 2 (+ 2) % Row 1 \SetRowColor{white} & Usually composed of stainless steel, etc. \tn % Row Count 4 (+ 2) % Row 2 \SetRowColor{LightBackground} & Length \{\{nl\}\}\{\{fa-caret-right\}\} 2-20cm(analytical) \{\{nl\}\}\{\{fa-caret-right\}\} Large column \{\{fa-arrow-right\}\} Use for preparative scale \{\{nl\}\}\{\{fa-caret-right\}\} Small column \{\{fa-arrow-right\}\} Packaged inside a capillary (75-100um diameter) \{\{fa-arrow-right\}\} Couple efficiently to MS \tn % Row Count 15 (+ 11) % Row 3 \SetRowColor{white} & Efficiency (N) \{\{nl\}\}\{\{fa-caret-right\}\} 3000-20000 \{\{nl\}\}\{\{fa-caret-right\}\} Dramatically lower than GC \{\{nl\}\}\{\{fa-caret-right\}\} Rule of thumb (GUESTIMATE ONLY): N\textasciitilde{} 3500 *L(cm) / d`p`(um) \tn % Row Count 22 (+ 7) % Row 4 \SetRowColor{LightBackground} & Sample Capacity \{\{nl\}\}\{\{fa-caret-right\}\} Depending on size of column and packing \{\{nl\}\}\{\{fa-caret-right\}\} \textasciitilde{}5mg/g \{{[}fa-arrow-right\}\} C18/silica\{\{nl\}\}\{\{fa-caret-right\}\} \textasciitilde{}10mg \{\{fa-arrow-right\}\} "vanilla" column \tn % Row Count 30 (+ 8) \end{tabularx} \par\addvspace{1.3em} \vfill \columnbreak \begin{tabularx}{8.4cm}{x{2.4 cm} x{5.6 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{8.4cm}}{\bf\textcolor{white}{Column (cont)}} \tn % Row 5 \SetRowColor{LightBackground} & Thickness of SP \{\{nl\}\}\{\{fa-caret-right\}\} \textasciitilde{} 1-2nm \tn % Row Count 2 (+ 2) % Row 6 \SetRowColor{white} & Resistance to mass transfer in MP and multipath terms dominate \tn % Row Count 5 (+ 3) \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{8.4cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{8.4cm}}{\bf\textcolor{white}{HPLC Column}} \tn \SetRowColor{LightBackground} \mymulticolumn{1}{p{8.4cm}}{\vspace{1px}\centerline{\includegraphics[width=5.1cm]{/web/www.cheatography.com/public/uploads/shaylannxd_1655354794_download (1).png}}} \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{8.4cm}{x{2.8 cm} x{5.2 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{8.4cm}}{\bf\textcolor{white}{HPLC System}} \tn % Row 0 \SetRowColor{LightBackground} {\bf{MP reservoirs}} & Stores MP in inert glass bottles\{\{nl\}\}\{\{fa-caret-right\}\} Platic coated Pyrex bottle (common) \{\{fa-arrow-right\}\} \$300/pc \tn % Row Count 5 (+ 5) % Row 1 \SetRowColor{white} & Degas solvent\{\{nl\}\}\{\{fa-caret-right\}\}Add element for filtering/degas \{\{nl\}\}\{\{fa-caret-right\}\}Minimize amount of oxygen dissolved into MP \{\{fa-arrow-right\}\}Oxygen reactive in high pressure (increase oxidation of analyte)\{\{nl\}\}\{\{fa-caret-right\}\}Small bubbles can form \{\{fa-arrow-right\}\} Result intensive undesirable peaks \tn % Row Count 18 (+ 13) % Row 2 \SetRowColor{LightBackground} & Connected to a computer(pump) \{\{nl\}\}\{\{fa-caret-right\}\}Control mixing value to produces desired MP mixture \tn % Row Count 23 (+ 5) % Row 3 \SetRowColor{white} {\bf{Analytical Column}} & Wide variety \{\{nl\}\}\{\{fa-caret-right\}\}Diameter\{\{fa-arrow-right\}\} \textasciitilde{}0.5cm (general) \{\{nl\}\}\{\{fa-caret-right\}\}Length \{\{fa-arrow-right\}\} 10-20cm (general) \tn % Row Count 29 (+ 6) % Row 4 \SetRowColor{LightBackground} {\bf{Injector}} & Manual \{\{nl\}\}\{\{fa-caret-right\}\}Syringe with sample \{\{nl\}\}\{\{fa-caret-right\}\}Inject needle into port and release \{\{nl\}\}\{\{fa-caret-right\}\}Liquid flow into loop (at atmospheric pressure) \{\{nl\}\}\{\{fa-caret-right\}\}When rotate lever to 60 degree \{\{fa-arrow-right\}\} Rearrange injector (set of valves)\{\{nl\}\}\{\{fa-caret-right\}\}Switches loop into flow path = swept down into analytical column \tn % Row Count 44 (+ 15) \end{tabularx} \par\addvspace{1.3em} \vfill \columnbreak \begin{tabularx}{8.4cm}{x{2.8 cm} x{5.2 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{8.4cm}}{\bf\textcolor{white}{HPLC System (cont)}} \tn % Row 5 \SetRowColor{LightBackground} & Operates at very high pressure \{\{nl\}\}\{\{fa-caret-right\}\}If inject sample into septum \{\{fa-arrow-right\}\}Shatter syringe \tn % Row Count 5 (+ 5) % Row 6 \SetRowColor{white} & Autosampler \{\{nl\}\}\{\{fa-caret-right\}\} Prepare in vials \{\{fa-arrow-right\}\} Tightly seal for sample to not evaporate \{\{nl\}\}\{\{fa-caret-right\}\}Program computer \{\{nl\}\}\{\{fa-caret-right\}\}Runs separation overnight \{\{nl\}\}\{\{fa-caret-right\}\}\textasciitilde{}100 samples \tn % Row Count 15 (+ 10) % Row 7 \SetRowColor{LightBackground} {\bf{Detector}} & Record data and integrate peak area\{\{nl\}\}\{\{fa-caret-right\}\}Quantitation \tn % Row Count 18 (+ 3) % Row 8 \SetRowColor{white} {\bf{High-Pressure Pump}} & Direct MP through system \tn % Row Count 20 (+ 2) % Row 9 \SetRowColor{LightBackground} & Use high pressure \{\{nl\}\}\{\{fa-caret-right\}\}Analytical column is filled with fine particles \tn % Row Count 24 (+ 4) % Row 10 \SetRowColor{white} {\bf{Dynamic Mixer}} & Needed to blend the different fluids (MP) \tn % Row Count 26 (+ 2) % Row 11 \SetRowColor{LightBackground} & Provides the correct percentages of fluids dynamically as the separation goes \tn % Row Count 29 (+ 3) % Row 12 \SetRowColor{white} {\bf{Guard Column}} & Avoid column killers \{\{nl\}\}\{\{fa-caret-right\}\}Species that strongly store in SP \{\{fa-arrow-right\}\}Never eluted\{\{nl\}\}\{\{fa-caret-right\}\}Contaminated column\{\{nl\}\}\{\{fa-caret-right\}\}Can change separation \{\{fa-arrow-right\}\}Destroy separation in terms of its analytical quality \tn % Row Count 40 (+ 11) \end{tabularx} \par\addvspace{1.3em} \vfill \columnbreak \begin{tabularx}{8.4cm}{x{2.8 cm} x{5.2 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{8.4cm}}{\bf\textcolor{white}{HPLC System (cont)}} \tn % Row 13 \SetRowColor{LightBackground} & Very small column \{\{nl\}\}\{\{fa-caret-right\}\}Contains same type of SP as analytical column \tn % Row Count 4 (+ 4) % Row 14 \SetRowColor{white} & Contamination is trapped inside \{\{nl\}\}\{\{fa-caret-right\}\}Periodically replace cartridges \{\{fa-arrow-right\}\}Preserves analytical column \tn % Row Count 10 (+ 6) % Row 15 \SetRowColor{LightBackground} & {\emph{Optional}} \tn % Row Count 11 (+ 1) % Row 16 \SetRowColor{white} {\bf{Narrow Bore Tubing}} & Tubes that connects components \tn % Row Count 13 (+ 2) % Row 17 \SetRowColor{LightBackground} & Has to be rated for HPLC \{\{nl\}\}\{\{fa-caret-right\}\}Can handle high pressure\{\{nl\}\}\{\{fa-caret-right\}\}Has to be narrow bore\{\{fa-arrow-right\}\}Don't want MP to mixing + dilute sample peaks \tn % Row Count 20 (+ 7) % Row 18 \SetRowColor{white} & Use short length as much as possible \tn % Row Count 22 (+ 2) % Row 19 \SetRowColor{LightBackground} & If fitting not installed correctly\{\{nl\}\}\{\{fa-caret-right\}\}Can result in dead volume \{\{fa-arrow-right\}\}Analyte that gets trapped in dead volume = gets broaden \tn % Row Count 29 (+ 7) % Row 20 \SetRowColor{white} {\bf{Thermostat Oven}} & Constant temperature \{\{nl\}\}\{\{fa-caret-right\}\}30-45 degrees\{\{nl\}\}\{\{fa-caret-right\}\}For a given MP\{\{fa-arrow-right\}\}Equilibrium is constant \tn % Row Count 35 (+ 6) \end{tabularx} \par\addvspace{1.3em} \vfill \columnbreak \begin{tabularx}{8.4cm}{x{2.8 cm} x{5.2 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{8.4cm}}{\bf\textcolor{white}{HPLC System (cont)}} \tn % Row 21 \SetRowColor{LightBackground} {\bf{Fraction Collector}} & Robots that periodically move tubes of the eluted species from detector \tn % Row Count 3 (+ 3) % Row 22 \SetRowColor{white} & Collect in vials \{\{nl\}\}\{\{fa-caret-right\}\}Sophisticated\{\{fa-arrow-right\}\}Deposit 1 peak per vial \{\{nl\}\}\{\{fa-caret-right\}\}Less sophisticated \{\{fa-arrow-right\}\}Periodically move from one vial to the next \tn % Row Count 11 (+ 8) \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{8.4cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{8.4cm}}{\bf\textcolor{white}{HPLC System Diagram}} \tn \SetRowColor{LightBackground} \mymulticolumn{1}{p{8.4cm}}{\vspace{1px}\centerline{\includegraphics[width=5.1cm]{/web/www.cheatography.com/public/uploads/shaylannxd_1655354903_hplc-center-pathway.jpg}}} \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{8.4cm}{x{3.36 cm} x{4.64 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{8.4cm}}{\bf\textcolor{white}{Stationary Phase}} \tn % Row 0 \SetRowColor{LightBackground} {\bf{Control Retention}} & Control retention \{\{fa-arrow-right\}\} Control distribution constant(K) \tn % Row Count 3 (+ 3) % Row 1 \SetRowColor{white} & Control by: \{\{nl\}\}\{\{fa-caret-right\}\}Adjust type of MP and SP \{\{nl\}\}\{\{fa-caret-right\}\}Adjust "strength" of MP and/or SP \{\{nl\}\}\{\{fa-caret-right\}\}Add additives to MP \{\{fa-arrow-right\}\} Interact specifically with analyte, SP, MP \{\{nl\}\}\{\{fa-caret-right\}\} MP velocity \{\{fa-arrow-right\}\} Does not alter retention (K or K') \tn % Row Count 17 (+ 14) % Row 2 \SetRowColor{LightBackground} {\bf{Stationary Phase}} & Most use silica support particles \{\{nl\}\}\{\{fa-caret-right\}\}Not great in high pH\{\{fa-arrow-right\}\}Use alumina(high pH resistance) \{\{nl\}\}\{\{fa-caret-right\}\}Low pH\{\{fa-arrow-right\}\} SP can come off of support (hydrolyzed) \{\{fa-arrow-right\}\}Use polymera support \tn % Row Count 29 (+ 12) % Row 3 \SetRowColor{white} & Almost always a "pure" SP \{\{nl\}\}\{\{fa-caret-right\}\}Not mixed \tn % Row Count 32 (+ 3) \end{tabularx} \par\addvspace{1.3em} \vfill \columnbreak \begin{tabularx}{8.4cm}{x{3.36 cm} x{4.64 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{8.4cm}}{\bf\textcolor{white}{Stationary Phase (cont)}} \tn % Row 4 \SetRowColor{LightBackground} & Use chemistry reaction to anchor SP to wall/surface \tn % Row Count 3 (+ 3) % Row 5 \SetRowColor{white} & Almost always a "monolayer" SP \{\{nl\}\}\{\{fa-caret-right\}\}d`f`\textasciitilde{}0 \tn % Row Count 6 (+ 3) % Row 6 \SetRowColor{LightBackground} & Wide range of polarities \{\{nl\}\}\{\{fa-caret-right\}\}Use chemical reactions to adjust the SP \tn % Row Count 10 (+ 4) % Row 7 \SetRowColor{white} & Can use chiral SP \{\{nl\}\}\{\{fa-caret-right\}\}Separate enantiomers \{\{nl\}\}\{\{fa-caret-right\}\}Reasonable environment conditions \tn % Row Count 16 (+ 6) % Row 8 \SetRowColor{LightBackground} {\bf{Silane Reaction}} & Use to anchor/bond silicones to silica surfaces \{\{nl\}\}\{\{fa-caret-right\}\} In packing materials (particles) \{\{nl\}\}\{\{fa-caret-right\}\} FS capillaries \tn % Row Count 23 (+ 7) % Row 9 \SetRowColor{white} & Use to deactivate silanols \tn % Row Count 25 (+ 2) % Row 10 \SetRowColor{LightBackground} & Silanol \{\{nl\}\}\{\{fa-caret-right\}\} Very reactive \{\{nl\}\}\{\{fa-caret-right\}\}Highly polar \{\{nl\}\}\{\{fa-caret-right\}\}Expose on surface of silica \tn % Row Count 31 (+ 6) \end{tabularx} \par\addvspace{1.3em} \vfill \columnbreak \begin{tabularx}{8.4cm}{x{3.36 cm} x{4.64 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{8.4cm}}{\bf\textcolor{white}{Stationary Phase (cont)}} \tn % Row 11 \SetRowColor{LightBackground} & Deactivate silanol \{\{nl\}\}\{\{fa-caret-right\}\}Use chloro silane\{\{nl\}\}\{\{fa-caret-right\}\}Ex: C18\{\{nl\}\}\{\{fa-caret-right\}\}Result in silanization of surface \tn % Row Count 7 (+ 7) % Row 12 \SetRowColor{white} & Residual silanol\{\{nl\}\}\{\{fa-caret-right\}\} SP is usually of a different polarity (non-polar)\{\{nl\}\}\{\{fa-caret-right\}\} Results in tailing of analytical peak \tn % Row Count 14 (+ 7) % Row 13 \SetRowColor{LightBackground} & After reacting surface with SP\{\{nl\}\}\{\{fa-caret-right\}\}Use a short chain alkyl\{\{nl\}\}\{\{fa-caret-right\}\}Take care of residual silanol \tn % Row Count 20 (+ 6) % Row 14 \SetRowColor{white} & If silanol peaks present\{\{nl\}\}\{\{fa-caret-right\}\} Column is old\{\{nl\}\}\{\{fa-caret-right\}\}Molecules of SP are desorbs or removed from surface \tn % Row Count 26 (+ 6) % Row 15 \SetRowColor{LightBackground} {\bf{Silanol Interactions}} & "Standard" silica \{\{fa-arrow-right\}\}SP support particles \{\{nl\}\}\{\{fa-caret-right\}\} Has silanols on surface \{\{fa-arrow-right\}\}Si-OH \{\{nl\}\}\{\{fa-caret-right\}\} \textasciitilde{}50\% of Si-OH are reacted to Si-O-Si-C18 \tn % Row Count 35 (+ 9) \end{tabularx} \par\addvspace{1.3em} \vfill \columnbreak \begin{tabularx}{8.4cm}{x{3.36 cm} x{4.64 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{8.4cm}}{\bf\textcolor{white}{Stationary Phase (cont)}} \tn % Row 16 \SetRowColor{LightBackground} & Residual Si-OH \{\{nl\}\}\{\{fa-caret-right\}\}When close to a metal in the silica \{\{nl\}\}\{\{fa-caret-right\}\}Are "acidic" and deprotonate easily leaving a Si-O\textasciicircum{}-\textasciicircum{} on the surface \tn % Row Count 8 (+ 8) % Row 17 \SetRowColor{white} & Act as ion-exchange sites for basic analyte\{\{nl\}\}\{\{fa-caret-right\}\} Reverse-Phase MP is not suited to ion-exchange separation\{\{nl\}\}\{\{fa-caret-right\}\}Very poor peaks are obtained for basic analyte \{\{fa-arrow-right\}\} Tailing peak \tn % Row Count 18 (+ 10) % Row 18 \SetRowColor{LightBackground} & Alternative options\{\{nl\}\}\{\{fa-caret-right\}\}Use a high purity silica column \{\{fa-arrow-right\}\}Less acidic silanol \{\{nl\}\}\{\{fa-caret-right\}\}Purchase a deactivated silica column \tn % Row Count 26 (+ 8) % Row 19 \SetRowColor{white} & Affects only basic compounds \{\{nl\}\}\{\{fa-caret-right\}\}Neutral and acidic compounds does not show tailing \tn % Row Count 31 (+ 5) \end{tabularx} \par\addvspace{1.3em} \vfill \columnbreak \begin{tabularx}{8.4cm}{x{3.36 cm} x{4.64 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{8.4cm}}{\bf\textcolor{white}{Stationary Phase (cont)}} \tn % Row 20 \SetRowColor{LightBackground} {\bf{Particle and Surface Area}} & Terms that dominate: \{\{nl\}\}\{\{fa-caret-right\}\}Overall plate height\{\{nl\}\}\{\{fa-caret-right\}\}Overall plate number\{\{nl\}\}\{\{fa-caret-right\}\} d`p` \{\{fa-arrow-right\}\} VD eq.: A and C`m`U \tn % Row Count 8 (+ 8) % Row 21 \SetRowColor{white} & Spherical Particle \{\{nl\}\}\{\{fa-caret-right\}\} Surface area/Volume scales with 1/d`p`\{\{nl\}\}\{\{fa-caret-right\}\} \{\{fa-arrow-up\}\} A/V = \{\{fa-arrow-down\}\} Retention \{\{nl\}\}\{\{fa-caret-right\}\}More SP packed = \{\{fa-arrow-up\}\} Retention (K') =\{\{fa-arrow-up\}\} Resolving Power (R') \tn % Row Count 20 (+ 12) % Row 22 \SetRowColor{LightBackground} & Size \{\{nl\}\}\{\{fa-caret-right\}\}Nearly all SP are um scale silica particles \{\{nl\}\}\{\{fa-caret-right\}\}Impacts VD equations \tn % Row Count 26 (+ 6) % Row 23 \SetRowColor{white} & Porous Particles \{\{nl\}\}\{\{fa-caret-right\}\} \{\{fa-arrow-up\}\} Surface area per particle \{\{nl\}\}\{\{fa-caret-right\}\}\{\{fa-arrow-up\}\}Amount of SP inside column\{\{nl\}\}\{\{fa-caret-right\}\}\{\{fa-arrow-up\}\} Retention and sample capacity = Better R'\{\{nl\}\}\{\{fa-caret-right\}\}Smaller the pore\{\{fa-arrow-right\}\} the larger the surface area/g of support \tn % Row Count 41 (+ 15) \end{tabularx} \par\addvspace{1.3em} \vfill \columnbreak \begin{tabularx}{8.4cm}{x{3.36 cm} x{4.64 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{8.4cm}}{\bf\textcolor{white}{Stationary Phase (cont)}} \tn % Row 24 \SetRowColor{LightBackground} & Diffusional Trap of small pores\{\{nl\}\}\{\{fa-caret-right\}\} Loss of analyte \{\{fa-arrow-right\}\} Tailing peaks\{\{nl\}\}\{\{fa-caret-right\}\}Large MW analyte go into small pores \{\{fa-arrow-right\}\} Never gets eluted \tn % Row Count 9 (+ 9) % Row 25 \SetRowColor{white} & Separation molecules \{\{nl\}\}\{\{fa-caret-right\}\} Small molecules \textasciitilde{} 80Å \{\{nl\}\}\{\{fa-caret-right\}\} Large proteins \textasciitilde{}120-300Å \tn % Row Count 15 (+ 6) % Row 26 \SetRowColor{LightBackground} {\bf{Normal Phase (NP)}} & Developed initially \{\{nl\}\}\{\{fa-caret-right\}\} Used raw silica as SP \{\{fa-arrow-right\}\} Polar silanol \tn % Row Count 20 (+ 5) % Row 27 \SetRowColor{white} & Separation based \{\{nl\}\}\{\{fa-caret-right\}\} Polar-polar interactions with silanol\{\{nl\}\}\{\{fa-caret-right\}\}Non-polar elute earlier\{\{nl\}\}\{\{fa-caret-right\}\}Polar analyte elute later \tn % Row Count 28 (+ 8) % Row 28 \SetRowColor{LightBackground} & In general\{\{nl\}\}\{\{fa-caret-right\}\}MP is opposite polarity to SP \{\{nl\}\}\{\{fa-caret-right\}\} Works well for polar species only \tn % Row Count 34 (+ 6) \end{tabularx} \par\addvspace{1.3em} \vfill \columnbreak \begin{tabularx}{8.4cm}{x{3.36 cm} x{4.64 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{8.4cm}}{\bf\textcolor{white}{Stationary Phase (cont)}} \tn % Row 29 \SetRowColor{LightBackground} {\bf{Reverse Phase (RP)}} & Use non-polar SP \{\{fa-arrow-right\}\} Silane reaction \{\{nl\}\}\{\{fa-caret-right\}\} Use polar MP (Water based) \tn % Row Count 5 (+ 5) % Row 30 \SetRowColor{white} & Separation based \{\{nl\}\}\{\{fa-caret-right\}\}Nonpolar-Nonpolar interactions \{\{nl\}\}\{\{fa-caret-right\}\} Reverse separation of normal phase\{\{nl\}\}\{\{fa-caret-right\}\}Polar species elute first \{\{nl\}\}\{\{fa-caret-right\}\}Non-polar species elute later \tn % Row Count 16 (+ 11) % Row 31 \SetRowColor{LightBackground} & More popular \{\{nl\}\}\{\{fa-caret-right\}\} Organic solvents used for MP \{\{fa-arrow-right\}\} Expensive/dangerous \{\{nl\}\}\{\{fa-caret-right\}\}Most analytes are made our of biological origin \{\{fa-arrow-right\}\} Soluble in water-based MP \tn % Row Count 26 (+ 10) \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{8.4cm}{x{3.04 cm} x{4.96 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{8.4cm}}{\bf\textcolor{white}{Controlling Retention}} \tn % Row 0 \SetRowColor{LightBackground} {\bf{SP Polarities}} & Retention depends on \{\{nl\}\}\{\{fa-caret-right\}\}Mass of SP \{\{nl\}\}\{\{fa-caret-right\}\}Type of SP \tn % Row Count 4 (+ 4) % Row 1 \SetRowColor{white} & Mass \{\{nl\}\}\{\{fa-caret-right\}\}Control by chain length \{\{nl\}\}\{\{fa-caret-right\}\}Density of SP on silica\{\{fa-arrow-right\}\} \% of silanol reacted \{\{nl\}\}\{\{fa-caret-right\}\}Surface area \{\{fa-arrow-right\}\}Porisity \tn % Row Count 13 (+ 9) % Row 2 \SetRowColor{LightBackground} & Selectivity depends on \{\{nl\}\}\{\{fa-caret-right\}\} Type of SP \{\{nl\}\}\{\{fa-caret-right\}\}Chain length \{\{nl\}\}\{\{fa-caret-right\}\}Linker type/length \tn % Row Count 19 (+ 6) % Row 3 \SetRowColor{white} {\bf{Chain Length}} & \{\{fa-arrow-up\}\}Chain length and/or \% organic (carbon) load of SP = \{\{fa-arrow-up\}\} Retention (K') \tn % Row Count 24 (+ 5) % Row 4 \SetRowColor{LightBackground} & Example \{\{nl\}\}\{\{fa-caret-right\}\}C4 \{\{fa-arrow-right\}\} C8 chain \{\{nl\}\}\{\{fa-caret-right\}\}Double chain length \{\{fa-arrow-right\}\} Double volume of SP \{\{fa-arrow-right\}\} Double retention \tn % Row Count 32 (+ 8) \end{tabularx} \par\addvspace{1.3em} \vfill \columnbreak \begin{tabularx}{8.4cm}{x{3.04 cm} x{4.96 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{8.4cm}}{\bf\textcolor{white}{Controlling Retention (cont)}} \tn % Row 5 \SetRowColor{LightBackground} & If within the same type of SP \{\{nl\}\}\{\{fa-caret-right\}\} Ex: Alkyl chains \{\{nl\}\}\{\{fa-caret-right\}\} No significant changes in selectivity \{\{nl\}\}\{\{fa-caret-right\}\} Only shrinking/expanding the chromatogram about t`m` \{\{nl\}\}\{\{fa-caret-right\}\}Shrink c-gram = reduce carbon \{\{nl\}\}\{\{fa-caret-right\}\}Stretch c-gram = Increase carbon load \tn % Row Count 14 (+ 14) % Row 6 \SetRowColor{white} & If analyte is not retained \{\{nl\}\}\{\{fa-caret-right\}\}Increase \% carbon of SP/chain length \tn % Row Count 18 (+ 4) % Row 7 \SetRowColor{LightBackground} & If analyte is excessively retained \{\{nl\}\}\{\{fa-caret-right\}\}Reduce \% carbon \tn % Row Count 22 (+ 4) % Row 8 \SetRowColor{white} & Significant changes in selectivity \{\{fa-arrow-right\}\} Resolving power \{\{nl\}\}\{\{fa-caret-right\}\}By changing the type of SP \{\{nl\}\}\{\{fa-caret-right\}\}Overall retention should remain roughly constant \{\{nl\}\}\{\{fa-caret-right\}\}Keeping the \% carbon constant \tn % Row Count 33 (+ 11) \end{tabularx} \par\addvspace{1.3em} \vfill \columnbreak \begin{tabularx}{8.4cm}{x{3.04 cm} x{4.96 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{8.4cm}}{\bf\textcolor{white}{Controlling Retention (cont)}} \tn % Row 9 \SetRowColor{LightBackground} {\bf{Effect of MP Strength}} & MP plays an active role in retention \{\{nl\}\}\{\{fa-caret-right\}\}Distribution constant \tn % Row Count 4 (+ 4) % Row 10 \SetRowColor{white} & Common solvents can be sorted according to their polarity \tn % Row Count 7 (+ 3) % Row 11 \SetRowColor{LightBackground} & Polarity of MP \{\{nl\}\}\{\{fa-caret-right\}\}Main factors of controlling K \{\{fa-arrow-right\}\} K' \tn % Row Count 11 (+ 4) % Row 12 \SetRowColor{white} & When changing MP strenght \{\{nl\}\}\{\{fa-caret-right\}\}Can calculate the retention under new MP \tn % Row Count 15 (+ 4) % Row 13 \SetRowColor{LightBackground} & Equation (Only for RP): \{\{nl\}\}\{\{fa-caret-right\}\}K'`new`/K'`old`= 10((P'`new`-P'`old`)/2) \tn % Row Count 19 (+ 4) % Row 14 \SetRowColor{white} & Equation (Polarity) P'`MP`= Weighted Polarity = \%`A`*PI`A` + \%`B`* PI`B`\{\{nl\}\}\{\{fa-caret-right\}\} PI= Polarity \tn % Row Count 24 (+ 5) % Row 15 \SetRowColor{LightBackground} & Equation (Only for NP): \{\{nl\}\}\{\{fa-caret-right\}\}K'`old`/K'`new`= 10((P'`old`-P'`new`)/2) \tn % Row Count 28 (+ 4) % Row 16 \SetRowColor{white} {\bf{Example}} & 1. Look at K' of first and last peak \{\{nl\}\}\{\{fa-caret-right\}\}K'`old` = (last peak - first peak)/first peak \{\{fa-arrow-right\}\}K' = (2.8-1.8)/1.8 = 0.5\{\{nl\}\}\{\{fa-caret-right\}\} K'`new` \{\{fa-arrow-right\}\} Want it at 10 \tn % Row Count 37 (+ 9) \end{tabularx} \par\addvspace{1.3em} \vfill \columnbreak \begin{tabularx}{8.4cm}{x{3.04 cm} x{4.96 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{8.4cm}}{\bf\textcolor{white}{Controlling Retention (cont)}} \tn % Row 17 \SetRowColor{LightBackground} & 2. Replace terms in equation\{\{nl\}\}\{\{fa-caret-right\}\} K'`new`/K'`old` = 10/0.5 = 20 \tn % Row Count 4 (+ 4) % Row 18 \SetRowColor{white} & 3. Old MP polarity\{\{nl\}\}\{\{fa-caret-right\}\}If old MP is 20\% water/80\% Acetonitrile\{\{nl\}\}\{\{fa-caret-right\}\}P'`old`= (0.2)(10.2)+(0.8)(5.8) = 6.68 \tn % Row Count 10 (+ 6) % Row 19 \SetRowColor{LightBackground} & 4. New MP polarity \{\{nl\}\}\{\{fa-caret-right\}\} P'`new` = 2log(K'`new`/K'`old`) + P'`old` \{\{nl\}\}\{\{fa-caret-right\}\} P'`new`= 2log(20) +6.68 = 9.28 \tn % Row Count 16 (+ 6) % Row 20 \SetRowColor{white} & 5. Solve new MP components\{\{nl\}\}\{\{fa-caret-right\}\} P'`new` = (x)(10.2) + (1-x)(5.8) = 9.98\{\{nl\}\}\{\{fa-caret-right\}\} 79.1\% water and 20.9\% ACN \tn % Row Count 22 (+ 6) % Row 21 \SetRowColor{LightBackground} & Rule of 3\{\{nl\}\}\{\{fa-caret-right\}\}Tool to check/estimate results (not used in calculations) \{\{nl\}\}\{\{fa-caret-right\}\} Change of 20\% water \textasciitilde{} 3x change in K' \tn % Row Count 29 (+ 7) % Row 22 \SetRowColor{white} {\bf{MP Gradient}} & Dynamically adjust MP \tn % Row Count 30 (+ 1) \end{tabularx} \par\addvspace{1.3em} \vfill \columnbreak \begin{tabularx}{8.4cm}{x{3.04 cm} x{4.96 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{8.4cm}}{\bf\textcolor{white}{Controlling Retention (cont)}} \tn % Row 23 \SetRowColor{LightBackground} & Some sample contain wide range of analytes\{\{nl\}\}\{\{fa-caret-right\}\}Low or high retention\{\{nl\}\}\{\{fa-caret-right\}\}no single MP that will elute them all in a satisfactory range of k' \tn % Row Count 8 (+ 8) % Row 24 \SetRowColor{white} & MP gradient\{\{nl\}\}\{\{fa-caret-right\}\}MP strength is initially "weak"\{\{fa-arrow-right\}\}Analyte well retained\{\{nl\}\}\{\{fa-caret-right\}\}Those with low retention\{\{fa-arrow-right\}\}Elute at reasonable K'\{\{nl\}\}\{\{fa-caret-right\}\}Strengthen MP over the course of separation\{\{nl\}\}\{\{fa-caret-right\}\}Strongly retained species can be eluted\{\{fa-arrow-right\}\}At a reasonable K" and R' \tn % Row Count 24 (+ 16) % Row 25 \SetRowColor{LightBackground} & MP≠constant \{\{fa-arrow-right\}\} Changing strength\{\{nl\}\}\{\{fa-caret-right\}\}K and K' ≠ constant \{\{nl\}\}\{\{fa-caret-right\}\}Can no longer be predicted \tn % Row Count 31 (+ 7) \end{tabularx} \par\addvspace{1.3em} \vfill \columnbreak \begin{tabularx}{8.4cm}{x{3.04 cm} x{4.96 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{8.4cm}}{\bf\textcolor{white}{Controlling Retention (cont)}} \tn % Row 26 \SetRowColor{LightBackground} {\bf{MP Selectivity}} & Alter selectivity (α) by changing type of solvent \tn % Row Count 3 (+ 3) % Row 27 \SetRowColor{white} & Resolving power \{\{nl\}\}\{\{fa-caret-right\}\}R= (α-1)(K'/(1+K'))(√𝑁/4)\{\{nl\}\}\{\{fa-caret-right\}\} Sensitive to selectivity \{\{fa-arrow-right\}\}Critical pairs in peaks \tn % Row Count 10 (+ 7) % Row 28 \SetRowColor{LightBackground} & Selectivity\{\{nl\}\}\{\{fa-caret-right\}\} Depends on nature of MP\{\{nl\}\}\{\{fa-caret-right\}\}Change selectivity = change type of MP \tn % Row Count 16 (+ 6) % Row 29 \SetRowColor{white} & Try and keep \{\{nl\}\}\{\{fa-caret-right\}\}P'`old`\textasciitilde{}P'`new`\{\{nl\}\}\{\{fa-caret-right\}\}Overall retention is roughly the same \{\{nl\}\}\{\{fa-caret-right\}\}Selectivity of peaks change \tn % Row Count 23 (+ 7) % Row 30 \SetRowColor{LightBackground} & Selectivity changes cannot be predicted \tn % Row Count 25 (+ 2) \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{8.4cm}{x{2.32 cm} x{5.68 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{8.4cm}}{\bf\textcolor{white}{Chiral Separation}} \tn % Row 0 \SetRowColor{LightBackground} {\bf{Basic Theory}} & Important to bioanalyses and pharmaceutical separation \tn % Row Count 2 (+ 2) % Row 1 \SetRowColor{white} & Separation of chiral species \{\{nl\}\}\{\{fa-caret-right\}\}Enantio selective \tn % Row Count 5 (+ 3) % Row 2 \SetRowColor{LightBackground} & Chiral SP or chiral additives to MP \{\{fa-arrow-right\}\} Separation of enantiomers \tn % Row Count 8 (+ 3) % Row 3 \SetRowColor{white} & Possible to separate structural isomers \{\{fa-arrow-right\}\} Strength of interaction changes as a function of isomer \tn % Row Count 13 (+ 5) \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{8.4cm}{x{3.04 cm} x{4.96 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{8.4cm}}{\bf\textcolor{white}{Ion-Exchange}} \tn % Row 0 \SetRowColor{LightBackground} {\bf{Ionic Species}} & Small "hard" ions \{\{nl\}\}\{\{fa-caret-right\}\}Inorganic ions\{\{nl\}\}\{\{fa-caret-right\}\}Cannot use ion pairing \{\{nl\}\}\{\{fa-caret-right\}\}Ions can interact with appropriate SP \{\{fa-arrow-right\}\} Ionic SP \tn % Row Count 8 (+ 8) % Row 1 \SetRowColor{white} {\bf{Basic Theory}} & Ion-exchange\{\{nl\}\}\{\{fa-caret-right\}\}Equilibrium-based separation\{\{nl\}\}\{\{fa-caret-right\}\} Discreet soption and displacement process\{\{nl\}\}\{\{fa-caret-right\}\}Carry throughout column \tn % Row Count 16 (+ 8) % Row 2 \SetRowColor{LightBackground} & Column\{\{nl\}\}\{\{fa-caret-right\}\}Does not use silica particles\{\{nl\}\}\{\{fa-caret-right\}\}Use polymer resin\{\{nl\}\}\{\{fa-caret-right\}\}Attach with a strong anion or cation \tn % Row Count 23 (+ 7) % Row 3 \SetRowColor{white} {\bf{Example}} & Using a strong anion SP \{\{nl\}\}\{\{fa-caret-right\}\}Cation exchange column \tn % Row Count 26 (+ 3) % Row 4 \SetRowColor{LightBackground} & 1. SP sulfonic acid (IEX resin) \{\{fa-arrow-right\}\} Anion surface particle (SO`3`\textasciicircum{}-\textasciicircum{})\{\{nl\}\}\{\{fa-caret-right\}\} Wash column with acid solution \{\{fa-arrow-right\} Cations (H\textasciicircum{}+\textasciicircum{}) \{\{nl\}\}\{\{fa-caret-right\}\}Sulfonic acid is protonated (SO`3`H) \tn % Row Count 36 (+ 10) \end{tabularx} \par\addvspace{1.3em} \vfill \columnbreak \begin{tabularx}{8.4cm}{x{3.04 cm} x{4.96 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{8.4cm}}{\bf\textcolor{white}{Ion-Exchange (cont)}} \tn % Row 5 \SetRowColor{LightBackground} & 2. Inject sample with cation analytes \{\{fa-arrow-right\}\} Metal ion (M\textasciicircum{}2+\textasciicircum{})\{\{nl\}\}\{\{fa-caret-right\}\} Metal ions interact with SP \{\{nl\}\}\{\{fa-caret-right\}\}Metal ions displace some of H\textasciicircum{}+\textasciicircum{} from resin \tn % Row Count 9 (+ 9) % Row 6 \SetRowColor{white} & 3. Unbind analyte from SP\{\{nl\}\}\{\{fa-caret-right\}\} Introduce a higher concentration of protons behind analytes \{\{fa-arrow-right\}\} MP gradient\{\{nl\}\}\{\{fa-caret-right\}\}\{\{nl\}\}\{\{fa-caret-right\}\}H\textasciicircum{}+\textasciicircum{} displace weakly bound analytes the move onto strongly bound analyte (cation) \{\{fa-arrow-right\}\} Exchange process\{\{nl\}\}\{\{fa-caret-right\}\} Cation analytes is displace off of surface and solubilize in MP \tn % Row Count 26 (+ 17) % Row 7 \SetRowColor{LightBackground} & 4. Analytes move down the column in strength of MP\{\{nl\}\}\{\{fa-caret-right\}\}Each type of analyte elute as a peak\{\{nl\}\}\{\{fa-caret-right\}\}MP ahead of each analyte is too weak \{\{fa-arrow-right\}\}Bound\{\{nl\}\}\{\{fa-caret-right\}\}MP behind each analyte is too strong \{\{fa-arrow-right\}\} Fully displace \tn % Row Count 38 (+ 12) \end{tabularx} \par\addvspace{1.3em} \vfill \columnbreak \begin{tabularx}{8.4cm}{x{3.04 cm} x{4.96 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{8.4cm}}{\bf\textcolor{white}{Ion-Exchange (cont)}} \tn % Row 8 \SetRowColor{LightBackground} {\bf{Equilibrium Constant}} & If it behaves like an equilibrium \{\{fa-arrow-right\}\}There is an equilibrium constant \{\{nl\}\}\{\{fa-caret-right\}\} Expect to behave like an LC \{\{fa-arrow-right\}\} Produce peaks \tn % Row Count 8 (+ 8) % Row 9 \SetRowColor{white} & Ion-exchange equilibrium constant would behave like a distribution constant \{\{nl\}\}\{\{fa-caret-right\}\}Obtain similar result of chromatogram peaks \{\{nl\}\}\{\{fa-caret-right\}\}MP controls retention \tn % Row Count 16 (+ 8) % Row 10 \SetRowColor{LightBackground} & Equation \{\{nl\}\}\{\{fa-caret-right\}\}K`iex`={[}exchange\&analyte{]}`s`/{[}analyte{]}`m` = C`s`/C`m` \tn % Row Count 20 (+ 4) \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{8.4cm}{x{3.04 cm} x{4.96 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{8.4cm}}{\bf\textcolor{white}{Optimization}} \tn % Row 0 \SetRowColor{LightBackground} {\bf{Process of Separation}} & 1. Carry out initial separation \{\{nl\}\}\{\{fa-caret-right\}\}Choose a strong MP \{\{nl\}\}\{\{fa-caret-right\}\}Ensure everything is eluted and fast separation \tn % Row Count 7 (+ 7) % Row 1 \SetRowColor{white} & 2. Adjust MP strength\{\{nl\}\}\{\{fa-caret-right\}\}Retention of last peak is within the right region\{\{nl\}\}\{\{fa-caret-right\}\}Depending on the complexity of sample\{\{nl\}\}\{\{fa-caret-right\}\}Simple sample \{\{fa-arrow-right\}\} K' \textasciitilde{} 10 \{\{nl\}\}\{\{fa-caret-right\}\}Complex sample \{\{fa-arrow-right\}\} K'\textasciitilde{} 20\{\{nl\}\}\{\{fa-caret-right\}\}Do calculations for an estimate adjusting needed \tn % Row Count 22 (+ 15) % Row 2 \SetRowColor{LightBackground} & 3. Examine if peaks are within the acceptable region\{\{nl\}\}\{\{fa-caret-right\}\} Examine if all analytes are well resolved \tn % Row Count 27 (+ 5) % Row 3 \SetRowColor{white} & 4. Consider if a gradient is required \{\{nl\}\}\{\{fa-caret-right\}\}Presence of large area of empty baseline \tn % Row Count 32 (+ 5) \end{tabularx} \par\addvspace{1.3em} \vfill \columnbreak \begin{tabularx}{8.4cm}{x{3.04 cm} x{4.96 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{8.4cm}}{\bf\textcolor{white}{Optimization (cont)}} \tn % Row 4 \SetRowColor{LightBackground} & 5. If needed \{\{nl\}\}\{\{fa-caret-right\}\}Switch MP type to alter selectivity \{\{nl\}\}\{\{fa-caret-right\}\} Gradient to reach acceptable retention and resolution \tn % Row Count 7 (+ 7) % Row 5 \SetRowColor{white} & 6. Consider using additives in MP\{\{nl\}\}\{\{fa-caret-right\}\}Help alter selectivity \tn % Row Count 11 (+ 4) % Row 6 \SetRowColor{LightBackground} & If MP type/mix strength does not achieve required separation\{\{nl\}\}\{\{fa-caret-right\}\}Change SP type \{\{nl\}\}\{\{fa-caret-right\}\}May consider type of separation \tn % Row Count 18 (+ 7) % Row 7 \SetRowColor{white} {\bf{Summary of MP Effects}} & Very powerful tool \{\{fa-arrow-right\}\} Versatile \{\{nl\}\}\{\{fa-caret-right\}\}Control retention and selectivity \tn % Row Count 23 (+ 5) % Row 8 \SetRowColor{LightBackground} & Directly affects distribution constant \tn % Row Count 25 (+ 2) % Row 9 \SetRowColor{white} & \{\{fa-arrow-up\}\} MP strength = \{\{fa-arrow-down\}\} K' \tn % Row Count 28 (+ 3) % Row 10 \SetRowColor{LightBackground} & MP "strength" is polarity \{\{nl\}\}\{\{fa-caret-right\}\}Effect are opposite in RP vs NP\{\{nl\}\}\{\{fa-caret-right\}\}RP \{\{fa-arrow-right\}\} Non-polar solvent (organic) = Stronger solvent \{\{nl\}\}\{\{fa-caret-right\}\}NP \{\{fa-arrow-right\}\}Polar solvent = Stronger solvent \tn % Row Count 39 (+ 11) \end{tabularx} \par\addvspace{1.3em} \vfill \columnbreak \begin{tabularx}{8.4cm}{x{3.04 cm} x{4.96 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{8.4cm}}{\bf\textcolor{white}{Optimization (cont)}} \tn % Row 11 \SetRowColor{LightBackground} & Ramped MP \{\{fa-arrow-right\}\} Gradient \{\{nl\}\}\{\{fa-caret-right\}\}Helps dynamically adjust K' \tn % Row Count 4 (+ 4) % Row 12 \SetRowColor{white} & Useful to make separation less intuitive \{\{fa-arrow-right\}\} R\{\{fa-arrow-down\}\} = K' \{\{fa-arrow-down\}\}\{\{nl\}\}\{\{fa-caret-right\}\}Gradient runs \{\{fa-arrow-right\}\} R \{\{fa-arrow-up\}\} = K' \{\{fa-arrow-down\}\} \tn % Row Count 13 (+ 9) \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{8.4cm}{x{4 cm} x{4 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{8.4cm}}{\bf\textcolor{white}{LC Detectors}} \tn % Row 0 \SetRowColor{LightBackground} {\bf{Ideal Detectors}} & High sensitivity \{\{nl\}\}\{\{fa-caret-right\}\}Steep slope \tn % Row Count 3 (+ 3) % Row 1 \SetRowColor{white} & High stability \{\{nl\}\}\{\{fa-caret-right\}\}Minimal drift \{\{nl\}\}\{\{fa-caret-right\}\}Minimal noise on baseline \tn % Row Count 9 (+ 6) % Row 2 \SetRowColor{LightBackground} & Very low DL \tn % Row Count 10 (+ 1) % Row 3 \SetRowColor{white} & Long LDR \tn % Row Count 11 (+ 1) % Row 4 \SetRowColor{LightBackground} & Can accept MP over wide range \{\{nl\}\}\{\{fa-caret-right\}\}Need reference to null out MP gradients \tn % Row Count 16 (+ 5) % Row 5 \SetRowColor{white} & Fast response \{\{nl\}\}\{\{fa-caret-right\}\}Independent of MP \tn % Row Count 19 (+ 3) % Row 6 \SetRowColor{LightBackground} & Easy to use, maintain and repair \tn % Row Count 21 (+ 2) % Row 7 \SetRowColor{white} & Inexpensive \tn % Row Count 22 (+ 1) % Row 8 \SetRowColor{LightBackground} & Selective/universal \{\{nl\}\}\{\{fa-caret-right\}\}Can be either depending on properties \tn % Row Count 27 (+ 5) % Row 9 \SetRowColor{white} & Non destructive \{\{nl\}\}\{\{fa-caret-right\}\}Can collect fractions \tn % Row Count 31 (+ 4) \end{tabularx} \par\addvspace{1.3em} \vfill \columnbreak \begin{tabularx}{8.4cm}{x{4 cm} x{4 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{8.4cm}}{\bf\textcolor{white}{LC Detectors (cont)}} \tn % Row 10 \SetRowColor{LightBackground} {\bf{1λ: UV- Vis Detector}} & Volume \{\{nl\}\}\{\{fa-caret-right\}\}\textasciitilde{}1-10 uL (very small) \{\{nl\}\}\{\{fa-arrow-right\}\}If V is too large, the signal becomes constant and we see a square shaped peak \tn % Row Count 8 (+ 8) % Row 11 \SetRowColor{white} & Pathlengths \{\{nl\}\}\{\{fa-caret-right\}\}\textasciitilde{}5-10mm \{\{nl\}\}\{\{fa-caret-right\}\}Longer = better \{\{nl\}\}\{\{fa-arrrow-right\}\}Bigger absorbance for same concentration (beer-lambert law) \tn % Row Count 17 (+ 9) % Row 12 \SetRowColor{LightBackground} & Window material \{\{nl\}\}\{\{fa-caret-right\}\}Quartz \tn % Row Count 20 (+ 3) % Row 13 \SetRowColor{white} & D`2` lamps \{\{nl\}\}\{\{fa-caret-right\}\}Good broad UV source \{\{nl\}\}\{\{fa-caret-right\}\}185-400nm \{\{nl\}\}\{\{fa-caret-right\}\}Spectrometer to isolate narrow band of wavelength \{\{nl\}\}\{\{fa-caret-right\}\}More simple than FAA \{\{nl\}\}\{\{fa-arrow-right\}\}UV does not have to compensate for a flame \tn % Row Count 34 (+ 14) \end{tabularx} \par\addvspace{1.3em} \vfill \columnbreak \begin{tabularx}{8.4cm}{x{4 cm} x{4 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{8.4cm}}{\bf\textcolor{white}{LC Detectors (cont)}} \tn % Row 14 \SetRowColor{LightBackground} & 2 sensors \{\{nl\}\}\{\{fa-caret-right\}\}Sample diode (I) \{\{nl\}\}\{\{fa-arrow-right\}\}Intensity coming through the sample \{\{nl\}\}\{\{fa-caret-right\}\}Reference diode (I`o`) \{\{nl\}\}\{\{fa-arrow-right\}\} Intensity from the light source \{\{nl\}\}\{\{fa-caret-right\}\}Equation \{\{nl\}\}\{\{fa-arrow-right\}\}A= -log(I/I`o`)= -log(T) \tn % Row Count 15 (+ 15) % Row 15 \SetRowColor{white} & Chromatogram \{\{nl\}\}\{\{fa-caret-right\}\}Abs vs time \{\{nl\}\}\{\{fa-caret-right\}\}Use peak area for quantitation \tn % Row Count 21 (+ 6) % Row 16 \SetRowColor{LightBackground} {\bf{Many λ: Photodiode array (PDA) Detector}} & Chromatogram \{\{nl\}\}\{\{fa-caret-right\}\}Collect many chromatograms across many wavelength (a spectrum) \tn % Row Count 26 (+ 5) % Row 17 \SetRowColor{white} & Sensitivity \{\{nl\}\}\{\{fa-caret-right\}\} Can choose/use chromatogram that provides the greatest sensitivity for each analyte \{\{nl\}\}\{\{fa-caret-right\}\}Find wavelength where analyte has least interference from neighbouring peaks \tn % Row Count 38 (+ 12) \end{tabularx} \par\addvspace{1.3em} \vfill \columnbreak \begin{tabularx}{8.4cm}{x{4 cm} x{4 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{8.4cm}}{\bf\textcolor{white}{LC Detectors (cont)}} \tn % Row 18 \SetRowColor{LightBackground} & Application \{\{nl\}\}\{\{fa-caret-right\}\}Useful to verify which peaks is which when MP is changed \tn % Row Count 5 (+ 5) % Row 19 \SetRowColor{white} {\bf{Refractive Index (RI) Detector}} & Uses refractive index of analyte compared to MP \{\{nl\}\}\{\{fa-caret-right\}\}Snell's law \{\{nl\}\}\{\{fa-arrow-right\}\}The rays will bend if there is a mismatch in refractive indices of the outside and the inside\{\{nl\}\}\{\{fa-caret-right\}\}When refractive indices match \{\{nl\}\}\{\{fa-arrow-right\}\}Rays not refracted \tn % Row Count 20 (+ 15) % Row 20 \SetRowColor{LightBackground} & Chromatogram \{\{nl\}\}\{\{fa-caret-right\}\}If RI match (only MP)\{\{nl\}\}\{\{fa-arrow-right\}\}Full intensity reaches sensor \{\{nl\}\}\{\{fa-caret-right\}\}If RI does not match (analyte eluting) \{\{nl\}\}\{\{fa-arrow-right\}\}Reduced intensity reaches sensor \{\{nl\}\}\{\{fa-caret-right\}\}Plot signal vs time \tn % Row Count 34 (+ 14) \end{tabularx} \par\addvspace{1.3em} \vfill \columnbreak \begin{tabularx}{8.4cm}{x{4 cm} x{4 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{8.4cm}}{\bf\textcolor{white}{LC Detectors (cont)}} \tn % Row 21 \SetRowColor{LightBackground} & Properties \{\{nl\}\}\{\{fa-caret-right\}\}Universal \{\{nl\}\}\{\{fa-caret-right\}\}Sensitivity \{\{nl\}\}\{\{fa-arrow-right\}\}\textasciitilde{}3 orders of magnitude less sensitive than UV \{\{nl\}\}\{\{fa-caret-right\}\}Absorbance \{\{nl\}\}\{\{fa-arrow-right\}\}Optically silent \{\{nl\}\}\{\{fa-caret-right\}\}Reference flow \{\{nl\}\}\{\{fa-arrow-right\}\}Limited gradient capability \tn % Row Count 16 (+ 16) % Row 22 \SetRowColor{white} {\bf{Evaporative Light Scatter (ELS) Detector}} & How it works \{\{nl\}\}\{\{fa-caret-right\}\} Uses nebulizer to produce aerosol\{\{nl\}\}\{\{fa-caret-right\}\}MP evaporates \{\{nl\}\}\{\{fa-arrow-right\}\}Leaves behind analyte fine crystals \{\{nl\}\}\{\{fa-caret-right\}\}Scattering of light (usually laser) \{\{nl\}\}\{\{fa-arrow-right\}\}Only when crystals are present \tn % Row Count 31 (+ 15) \end{tabularx} \par\addvspace{1.3em} \vfill \columnbreak \begin{tabularx}{8.4cm}{x{4 cm} x{4 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{8.4cm}}{\bf\textcolor{white}{LC Detectors (cont)}} \tn % Row 23 \SetRowColor{LightBackground} & Analyte \{\{nl\}\}\{\{fa-caret-right\}\}Needs to produce crystals \{\{nl\}\}\{\{fa-arrow-right\}\} Very low volatility \{\{nl\}\}\{\{fa-caret-right\}\}Can work for non-absorbing analytes \{\{nl\}\}\{\{fa-caret-right\}\}Response is nearly uniform for all analytes \tn % Row Count 12 (+ 12) % Row 24 \SetRowColor{white} & Buffers (MP) \{\{nl\}\}\{\{fa-caret-right\}\}Must be volatile \{\{nl\}\}\{\{fa-arrow-right\}\}Restricts choices \{\{nl\}\}\{\{fa-arrow-right\}\}Can't use inorganic buffers: Leads to buffer salts \tn % Row Count 21 (+ 9) % Row 25 \SetRowColor{LightBackground} & Better than RI detector \{\{nl\}\}\{\{fa-caret-right\}\}Higher sensitivity \{\{nl\}\}\{\{fa-caret-right\}\}Longer LDR \tn % Row Count 27 (+ 6) \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{8.4cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{8.4cm}}{\bf\textcolor{white}{UV-Vis Detector Diagram}} \tn \SetRowColor{LightBackground} \mymulticolumn{1}{p{8.4cm}}{\vspace{1px}\centerline{\includegraphics[width=5.1cm]{/web/www.cheatography.com/public/uploads/cheche26_1655590400_6D75D59F-D578-49C0-A7DC-08EBBE3659C9.png}}} \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{8.4cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{8.4cm}}{\bf\textcolor{white}{Photodiode Array Chromatogram}} \tn \SetRowColor{LightBackground} \mymulticolumn{1}{p{8.4cm}}{\vspace{1px}\centerline{\includegraphics[width=5.1cm]{/web/www.cheatography.com/public/uploads/cheche26_1655590829_3626A0F8-7963-4090-A681-CBF51C5A722D.png}}} \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{8.4cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{8.4cm}}{\bf\textcolor{white}{Refractive Index Detector Diagram}} \tn \SetRowColor{LightBackground} \mymulticolumn{1}{p{8.4cm}}{\vspace{1px}\centerline{\includegraphics[width=5.1cm]{/web/www.cheatography.com/public/uploads/cheche26_1655591383_AA108841-8ECB-4968-A657-8AB96B1922FC.jpeg}}} \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{8.4cm}{x{3.04 cm} x{4.96 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{8.4cm}}{\bf\textcolor{white}{LC-MS}} \tn % Row 0 \SetRowColor{LightBackground} {\bf{Properties}} & Electrospray\{\{nl\}\}\{\{fa-caret-right\}\} Sample goes through nebulizer \{\{nl\}\}\{\{fa-caret-right\}\}High voltage is applied \{\{fa-arrow-right\}\}Produces charged droplets \tn % Row Count 7 (+ 7) % Row 1 \SetRowColor{white} & Fine metal capillary tube \{\{nl\}\}\{\{fa-caret-right\}\}\textasciitilde{}0.5-1mm\{\{nl\}\}\{\{fa-caret-right\}\}Connected to the outlet \{\{nl\}\}\{\{fa-caret-right\}\}Charged with high voltage \tn % Row Count 14 (+ 7) % Row 2 \SetRowColor{LightBackground} & Signal \{\{nl\}\}\{\{fa-caret-right\}\}MP is pumped \{\{nl\}\}\{\{fa-caret-right\}\}Charged droplets are attracted to MS interface \{\{nl\}\}\{\{fa-caret-right\}\}Droplets dry down in flight \{\{nl\}\}\{\{fa-arrow-right\}\}charge density \{\{fa-arrow-up\}\} until charge repulsion causes coulombic explosion \tn % Row Count 26 (+ 12) % Row 3 \SetRowColor{white} {\bf{Single Quadrupole MS}} & Mass spectrum \{\{nl\}\}\{\{fa-caret-right\}\}Simple \{\{nl\}\}\{\{fa-caret-right\}\}MP evaporates away \{\{nl\}\}\{\{fa-arrow-right\}\}Leaves {[}M+H{]}\textasciicircum{}+\textasciicircum{} ions\{\{fa-arrow-right\}\}no fragments \tn % Row Count 33 (+ 7) \end{tabularx} \par\addvspace{1.3em} \vfill \columnbreak \begin{tabularx}{8.4cm}{x{3.04 cm} x{4.96 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{8.4cm}}{\bf\textcolor{white}{LC-MS (cont)}} \tn % Row 4 \SetRowColor{LightBackground} & Problem \{\{nl\}\}\{\{fa-caret-right\}\} Difficult for definitive ID \{\{nl\}\}\{\{fa-caret-right\}\}Potential m/z overlap \tn % Row Count 5 (+ 5) % Row 5 \SetRowColor{white} {\bf{Triple Quadrupole MS}} & Allows the production of fragments \{\{nl\}\}\{\{fa-caret-right\}\}Contains Q`1`, Q`2`(CID) and Q`3` \tn % Row Count 9 (+ 4) % Row 6 \SetRowColor{LightBackground} & Q`1`\{\{fa-arrow-right\}\} Parent ions are selected \{\{nl\}\}Q`2`(CID) \{\{fa-arrow-right\}\}Collision induced dissociation\{\{fa-arrow-right\}\}Selected ions collide with Ar/He/N`2` (Creates fragments) \{\{nl\}\}Q`3`\{\{fa-arrow-right\}\}Fragment ions are filtered/scanned\{\{fa-arrow-right\}\}Detected to produce mass spectrum \tn % Row Count 22 (+ 13) % Row 7 \SetRowColor{white} & Mass spectrum \{\{nl\}\}\{\{fa-caret-right\}\}Scanning mode\{\{fa-arrow-right\}\}Produce full spectrum \{\{fa-arrow-right\}\}For method development \{\{nl\}\}\{\{fa-caret-right\}\}Multiple reaction monitoring (MRM)\{\{fa-arrow-right\}\}Only selected fragments are measured\{\{fa-arrow-right\}\}For quantitation \tn % Row Count 34 (+ 12) \end{tabularx} \par\addvspace{1.3em} \vfill \columnbreak \begin{tabularx}{8.4cm}{x{3.04 cm} x{4.96 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{8.4cm}}{\bf\textcolor{white}{LC-MS (cont)}} \tn % Row 8 \SetRowColor{LightBackground} & Better than single quadrupole \{\{nl\}\}\{\{fa-caret-right\}\} Lower DL \{\{nl\}\}\{\{fa-arrow-right\}\}Less interferences\{\{nl\}\}\{\{fa-caret-right\}\} Longer LDR\{\{nl\}\}\{\{fa-caret-right\}\}Allows positive ID of analyte\{\{nl\}\}\{\{fa-caret-right\}\}Better selectivity with MRM \tn % Row Count 11 (+ 11) % Row 9 \SetRowColor{white} & Problem \{\{nl\}\}\{\{fa-caret-right\}\}Q`3` scans across m/z range pretty slowly (1-30 spectra/s) \{\{nl\}\}\{\{fa-caret-right\}\}Lowering resolution allows faster scanning\{\{fa-arrow-right\}\}Can't get a full detailed spectrum \tn % Row Count 20 (+ 9) % Row 10 \SetRowColor{LightBackground} {\bf{QTOF MS}} & Quadrupole time of flight MS \tn % Row Count 22 (+ 2) % Row 11 \SetRowColor{white} & Advantage \{\{nl\}\}\{\{fa-caret-right\}\}Can scan 10000 spectra/s \{\{nl\}\}\{\{fa-arrow-right\}\}Many are averaged together to improve quality (better than QQQ) \{\{nl\}\}\{\{fa-caret-right\}\}Allows more analytes to be measured simultaneously \{\{nl\}\}\{\{fa-caret-right\}\}Higher mass accuracies and resolution \{\{nl\}\}\{\{fa-arrow-right\}\}Permits greater ID power \{\{nl\}\}\{\{fa-caret-right\}\}LDR\textgreater{}5 orders of magnitude \tn % Row Count 38 (+ 16) \end{tabularx} \par\addvspace{1.3em} \vfill \columnbreak \begin{tabularx}{8.4cm}{x{3.04 cm} x{4.96 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{8.4cm}}{\bf\textcolor{white}{LC-MS (cont)}} \tn % Row 12 \SetRowColor{LightBackground} & Problem \{\{nl\}\}\{\{fa-caret-right\}\}Not as precise as QQQ \{\{nl\}\}\{\{fa-caret-right\}\}Expensive \tn % Row Count 4 (+ 4) \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{8.4cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{8.4cm}}{\bf\textcolor{white}{Triple Quadrupole Detector Diagram}} \tn \SetRowColor{LightBackground} \mymulticolumn{1}{p{8.4cm}}{\vspace{1px}\centerline{\includegraphics[width=5.1cm]{/web/www.cheatography.com/public/uploads/cheche26_1655588945_382DAC3D-AE35-47F9-B97D-738491B03EE2.png}}} \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{8.4cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{8.4cm}}{\bf\textcolor{white}{QTOF MS Detector Diagram}} \tn \SetRowColor{LightBackground} \mymulticolumn{1}{p{8.4cm}}{\vspace{1px}\centerline{\includegraphics[width=5.1cm]{/web/www.cheatography.com/public/uploads/cheche26_1655589404_F7B73AE1-2BE4-45E3-A055-784C9C67728B.png}}} \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{8.4cm}{x{3.52 cm} x{4.48 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{8.4cm}}{\bf\textcolor{white}{Summary and Applications}} \tn % Row 0 \SetRowColor{LightBackground} {\bf{Advantage}} & MP plays a critical role in controlling separation\{\{nl\}\}\{\{fa-caret-right\}\}Retention \{\{fa-arrow-right\}\}"Strength" \{\{nl\}\}\{\{fa-caret-right\}\}Selectivity \{\{fa-arrow-right\}\}"Type" \tn % Row Count 8 (+ 8) % Row 1 \SetRowColor{white} & Wide range of MP available\{\{nl\}\}\{\{fa-caret-right\}\}Diverse set of separation conditions\{\{nl\}\}\{\{fa-caret-right\}\}Within the same SP and column\{\{nl\}\}\{\{fa-caret-right\}\}Allow to quickly try different separation conditions\{\{nl\}\}\{\{fa-caret-right\}\}Allow to quickly arrive to a newer optimization separation \tn % Row Count 22 (+ 14) % Row 2 \SetRowColor{LightBackground} & No requirements of volatile analyte\{\{nl\}\}\{\{fa-caret-right\}\}Needs to be soluble in MP \tn % Row Count 26 (+ 4) % Row 3 \SetRowColor{white} & Wider range of SP available \{\{nl\}\}\{\{fa-caret-right\}\}Can choose type \{\{nl\}\}\{\{fa-caret-right\}\}Can change particle size\{\{nl\}\}\{\{fa-caret-right\}\}Can choose the amount of SP/unit of column \tn % Row Count 35 (+ 9) \end{tabularx} \par\addvspace{1.3em} \vfill \columnbreak \begin{tabularx}{8.4cm}{x{3.52 cm} x{4.48 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{8.4cm}}{\bf\textcolor{white}{Summary and Applications (cont)}} \tn % Row 4 \SetRowColor{LightBackground} & Easy to collect purified analyte \tn % Row Count 2 (+ 2) % Row 5 \SetRowColor{white} {\bf{Disadvantage}} & Much lower N compared to GC-FSOT\{\{nl\}\}\{\{fa-caret-right\}\} Degrades R and \{\{fa-arrow-up\}\} Overlapping peaks \{\{nl\}\}\{\{fa-caret-right\}\}Many LC have low N \{\{fa-arrow-right\}\} 1000-5000 \tn % Row Count 11 (+ 9) % Row 6 \SetRowColor{LightBackground} {\bf{Detector Comparison}} & Selective or universal \tn % Row Count 13 (+ 2) % Row 7 \SetRowColor{white} & DL \tn % Row Count 14 (+ 1) % Row 8 \SetRowColor{LightBackground} & LDR \tn % Row Count 15 (+ 1) % Row 9 \SetRowColor{white} & Cost \{\{nl\}\}\{\{fa-caret-right\}\}Purchase \{\{nl\}\}\{\{fa-caret-right\}\}Maintenance \tn % Row Count 19 (+ 4) % Row 10 \SetRowColor{LightBackground} & Sample capacity \tn % Row Count 20 (+ 1) % Row 11 \SetRowColor{white} & Immune from MP gradients? \tn % Row Count 22 (+ 2) % Row 12 \SetRowColor{LightBackground} & Amendable to using IS? \tn % Row Count 23 (+ 1) % Row 13 \SetRowColor{white} {\bf{Key Factors if LC is useful}} & 1. Analytes soluble in liquid MP \tn % Row Count 25 (+ 2) % Row 14 \SetRowColor{LightBackground} & 2. Concentration of analytes are high enough\{\{nl\}\}\{\{fa-caret-right\}\}Can load larger volumes/concentraton on columns \{\{nl\}\}\{\{fa-caret-right\}\}Combine with sensitive detectors \tn % Row Count 33 (+ 8) \end{tabularx} \par\addvspace{1.3em} \vfill \columnbreak \begin{tabularx}{8.4cm}{x{3.52 cm} x{4.48 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{8.4cm}}{\bf\textcolor{white}{Summary and Applications (cont)}} \tn % Row 15 \SetRowColor{LightBackground} & 3. Does sample require a high R' separation \{\{nl\}\}\{\{fa-caret-right\}\}GC favored over LC \tn % Row Count 4 (+ 4) % Row 16 \SetRowColor{white} & 4. Need to recover analyte\{\{nl\}\}\{\{fa-caret-right\}\}LC \textgreater{} GC \tn % Row Count 7 (+ 3) % Row 17 \SetRowColor{LightBackground} & 5. Slower than GC \tn % Row Count 8 (+ 1) % Row 18 \SetRowColor{white} {\bf{Applications}} & Anti-dopping and forensics \tn % Row Count 10 (+ 2) % Row 19 \SetRowColor{LightBackground} & Pharmaceutical \{\{nl\}\}\{\{fa-caret-right\}\}Process control\{\{nl\}\}\{\{fa-caret-right\}\}Quality control\{\{nl\}\}\{\{fa-caret-right\}\}R\&D\{\{nl\}\}\{\{fa-caret-right\}\}Metabolic\{\{nl\}\}\{\{fa-caret-right\}\}Proteomic \tn % Row Count 19 (+ 9) % Row 20 \SetRowColor{white} & Food and Beverages\{\{nl\}\}\{\{fa-caret-right\}\}Vitamins\{\{nl\}\}\{\{fa-caret-right\}\}Pesticides\{\{nl\}\}\{\{fa-caret-right\}\}Contaminants \tn % Row Count 25 (+ 6) % Row 21 \SetRowColor{LightBackground} & Environmental\{\{nl\}\}\{\{fa-caret-right\}\}Pesticides\{\{nl\}\}\{\{fa-caret-right\}\}Industrial materials \tn % Row Count 30 (+ 5) \end{tabularx} \par\addvspace{1.3em} \vfill \columnbreak \begin{tabularx}{8.4cm}{x{3.52 cm} x{4.48 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{8.4cm}}{\bf\textcolor{white}{Summary and Applications (cont)}} \tn % Row 22 \SetRowColor{LightBackground} & R\&D\{\{nl\}\}\{\{fa-caret-right\}\}Organic synthesis \{\{nl\}\}\{\{fa-caret-right\}\}Catalysis \tn % Row Count 4 (+ 4) % Row 23 \SetRowColor{white} & Industrial \{\{nl\}\}\{\{fa-caret-right\}\}Feedstock \tn % Row Count 6 (+ 2) \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} % That's all folks \end{multicols*} \end{document}