Liquid Chromatography Cheat Sheet by shaylannxd via cheatography.com/149855/cs/32584/

Basic Theory	
Liquid Chromatog- raphy	MP → LiquidActively participate in equilibrium process
	 SP → Quasi/porous solid Most common do reverse-phase chromatography SP Film thickness → Very small (monolayer)
	Dm ~ 10Ds ▶ B/U ~ 0
	df ~ 0 ▶ CsU~0
	Always carried-out in packed columns
Advantage	More versatile than GC
	Adaptable to needs
Disadvantage	Much less efficient than GC
	 Diffusion coefficient of analyte is orders of magnitude smaller than in GC ▶ Bounced into other molecules ⇒ Diffusion rate is small
	In liquid phase (not gas)
Improve efficiency	 Use small particle → Narrow range velocity Dependent on particle diameter (dp) Smaller particle size = smaller plate height at any given velocity
	Compensate for travel distance of analyte to reach surface of SP Minimize the space between the particles that the analyte have to diffuse across
	Analytical LC ➔ < 5µm
	HPLC ➔ >3µm
	UHPLC ➔ < 3µm

Theory Equations

LC Velocity Range

Column	
Packed Column	Packed full of particles
	Usually composed of stainless steel, etc.
	Length 2-20cm(analytical)
	 Large column → Use for preparative scale Small column → Packaged inside a capillary (75-100µm diameter) → Couple efficiently to MS

By shaylannxd

cheatography.com/shaylannxd/

Not published yet. Last updated 20th June, 2022. Page 1 of 13. Sponsored by **ApolloPad.com** Everyone has a novel in them. Finish Yours! https://apollopad.com

Liquid Chromatography Cheat Sheet by shaylannxd via cheatography.com/149855/cs/32584/

Column (cont)

Efficiency (N)

- ▶ 3000-20000
- Dramatically lower than GC
- ▶ Rule of thumb (GUESTIMATE ONLY): N~ 3500 *L(cm) / dp(um)

Sample Capacity

- Depending on size of column and packing
- ~5mg/g {[fa-arrow-right}} C18/silica
- Thickness of SP
- ▶ ~ 1-2nm

Resistance to mass transfer in MP and multipath terms dominate

HPLC Column

HPLC System			
MP	Stores MP in inert glass bottles		
reservoirs	 Platic coated Pyrex bottle (common) + \$ 	300/pc	
	 Degas solvent Add element for filtering/degas Minimize amount of oxygen dissolved into MP → Oxygen reactive in high pressure (increase oxidation of analyte) Small bubbles can form → Result intensive undesirable peaks 		
	Connected to a computer(pump) Control mixing value to produces desired 	MP mixture	
	By shaylannxd Not pu	blished yet.	

HPLC Syster	n (cont)
Analytical Column	Wide variety ▶ Diameter ➔ ~0.5cm (general) ▶ Length ➔ 10-20cm (general)
Injector	 Manual Syringe with sample Inject needle into port and release Liquid flow into loop (at atmospheric pressure) When rotate lever to 60 degree → Rearrange injector (set of valves) Switches loop into flow path = swept down into analytical column
	Operates at very high pressure ▶ If inject sample into septum ✦Shatter syringe
	 Autosampler Prepare in vials → Tightly seal for sample to not evaporate Program computer Runs separation overnight ~100 samples
Detector	Record data and integrate peak area Quantitation
High-P- ressure Pump	Direct MP through system
	Use high pressure Analytical column is filled with fine particles
Dynamic Mixer	Needed to blend the different fluids (MP)
	Provides the correct percentages of fluids dynami- cally as the separation goes

Not published yet. Last updated 20th June, 2022. Page 2 of 13. Sponsored by **ApolloPad.com** Everyone has a novel in them. Finish Yours! https://apollopad.com

Liquid Chromatography Cheat Sheet by shaylannxd via cheatography.com/149855/cs/32584/

HPLC System (cont)		HPLC System Diagram		
Guard Column	 Avoid column killers Species that strongly store in SP → Never eluted Contaminated column Can change separation → Destroy separation in terms of its analytical quality 			
	Very small column Contains same type of SP as analytical column 		x2019704	
	Contamination is trapped inside	Stationary P	hase	
	 Periodically replace cartridges Preserves analytical column 	Control Retention	Control retention 🗲 Control distribution constant(K)	
	Optional		Control by:	
Narrow Bore Tubing	Tubes that connects components		 Adjust type of MP and SP Adjust "strength" of MP and/or SP Add additives to MP Interact specifically with 	
	Has to be rated for HPLC		 MP velocity Does not alter retention (K or K') 	
	 Can handle high pressure Has to be narrow bore Don't want MP to mixing + dilute sample peaks 	Stationary Phase	Most use silica support particles ► Not great in high pH → Use alumina(high pH resist-	
	Use short length as much as possible		ance)	
	If fitting not installed correctly		 → Use polymera support 	
	Can result in dead volume → Analyte that gets trapped in dead volume = gets broaden		Almost always a "pure" SP ▶ Not mixed	
Thermostat	Constant temperature		Use chemistry reaction to anchor SP to wall/surface	
Oven	 ▶ 30-45 degrees ▶ For a given MP→ Equilibrium is constant 		Almost always a "monolayer" SP ▶ df~0	
Fraction Collector	Robots that periodically move tubes of the eluted species from detector		Wide range of polarities	
	Collect in vials Sophisticated → Deposit 1 peak per vial Less sophisticated → Periodically move from one vial to the next 		 Section reactions to adjust the SP Can use chiral SP Separate enantiomers Reasonable environment conditions 	

By shaylannxd

Not published yet. Last updated 20th June, 2022. Page 3 of 13. Sponsored by **ApolloPad.com** Everyone has a novel in them. Finish Yours! https://apollopad.com

Liquid Chromatography Cheat Sheet by shaylannxd via cheatography.com/149855/cs/32584/

Stationary Phase (cont)		Stationary Phase	(cont)	
Silane Reaction	Use to anchor/bond silicones In packing materials (part FS capillaries 	s to silica surfaces icles)		Residual Si-OH When close to a metal in the silica Are "acidic" and deprotonate easily leaving a Si-O ⁻ on the surface
	Use to deactivate silanols Silanol Very reactive Highly polar Expose on surface of silic.	a		Act as ion-exchange sites for basic analyte Reverse-Phase MP is not suited to ion-exchange separation Very poor peaks are obtained for basic analyte → Tailing peak
	 Use chloro silane Ex: C18 Result in silanization of su 	rface		Alternative options Use a high purity silica column → Less acidic silanol Purchase a deactivated silica column
	 Residual silanol SP is usually of a different Results in tailing of analytic 	it polarity (non-polar) tical peak		Affects only basic compounds Neutral and acidic compounds does not show tailing
	After reacting surface with SP Use a short chain alkyl Take care of residual silanol 		Particle and Surface Area	Terms that dominate: • Overall plate height • Overall plate number
	If silanol peaks present Column is old 			 ▶ dp → VD eq.: A and CmU
	 Molecules of SP are desorbs or removed from surface 			Spherical Particle Surface area/Volume scales with 1/dp
Silanol Intera- "Standard" silica → SP support particles ctions Has silanols on surface → Si-OH ~50% of Si-OH are reacted to Si-O-Si-C18			 ▲ A/V = ▲ Retention More SP packed = ▲ Retention (K') = ▲ Resolving Power (R') 	
				Size Nearly all SP are um scale silica particles Impacts VD equations
By shaylannxd Not published yet. Last updated 20th Ju		ne, 2022.	Sponsored by ApolloPad.com Everyone has a novel in them. Finish	

cheatography.com/shaylannxd/

Page 4 of 13.

Yours! https://apollopad.com

Liquid Chromatography Cheat Sheet by shaylannxd via cheatography.com/149855/cs/32584/

Stationary Phase (cont)		Stationary Phase (cont)			
	 Porous Particles ↑ Surface area per particle ↑ Amount of SP inside column ↑ Retention and sample capacity = Better R' Smaller the pore → the larger the surface area/g of support 		 More popular Organic solvents used for MP → Expensive/dangerous Most analytes are made our of biological origin → Soluble in water-based MP 		
	Diffusional Trap of small pores Loss of analyte → Tailing peaks Large MW analyte go into small pores → 	SP Polarities	Retention depends on Mass of SP Type of SP 		
	 Separation molecules Small molecules ~ 80Å Large proteins ~120-300Å 		Mass Control by chain length Density of SP on silica → % of silanol reacted Surface area → Porisity 		
Normal Phase (NP)	 Developed initially ▶ Used raw silica as SP → Polar silanol Separation based ▶ Polar-polar interactions with silanol 		Selectivity depends on Type of SP Chain length Linker type/length 		
	Non-polar elute earlierPolar analyte elute later	Chain Length	↑ Chain length and/or % organic (carbon) load of SP = ↑ Retention (K')		
	In general ► MP is opposite polarity to SP ► Works well for polar species only		Example		
Reverse Phase (RP)	Use non-polar SP → Silane reaction ▶ Use polar MP (Water based)		If within the same type of SP		
	 Separation based Nonpolar-Nonpolar interactions Reverse separation of normal phase Polar species elute first Non-polar species elute later 		 Ex: Alkyl chains No significant changes in selectivity Only shrinking/expanding the chromatogram about t Shrink c-gram = reduce carbon Stretch c-gram = Increase carbon load 		

By shaylannxd

Cheatography

Not published yet. Last updated 20th June, 2022. Page 5 of 13. Sponsored by **ApolloPad.com** Everyone has a novel in them. Finish Yours! https://apollopad.com

Liquid Chromatography Cheat Sheet by shaylannxd via cheatography.com/149855/cs/32584/

Controlling Retention (cont)		Controlling	g Retention (cont)
	If analyte is not retained ► Increase % carbon of SP/chain length If analyte is excessively retained ► Reduce % carbon Significant changes in selectivity ➔ Resolving power		 3. Old MP polarity If old MP is 20% water/80% Acetonitrile P'old= (0.2)(10.2)+(0.8)(5.8) = 6.68 4. New MP polarity P'new = 2log(K'new/K'old) + P'old P'new= 2log(20) + 6.68 = 9.28
power By changing the type of SP Overall retention should remain roughly constant Keeping the % carbon constant Effect of MP MP plays an active role in retention			 5. Solve new MP components P'new = (x)(10.2) + (1-x)(5.8) = 9.98 79.1% water and 20.9% ACN Rule of 3 Tool to check/estimate results (not used in calcul-
Strength	 Distribution constant Common solvents can be sorted according to their 		ations) Change of 20% water ~ 3x change in K'
	Polarity of MP	MP Gradient	Dynamically adjust MP
	 Wain factors of controlling K • K When changing MP strenght Can calculate the retention under new MP Equation (Only for RP): 		 Some sample contain wide range of analytes Low or high retention no single MP that will elute them all in a satisfactory range of k'
	 K'new/K'old= 10((P'new-P'old)/2) Equation (Polarity) P'MP= Weighted Polarity = %A*PIA + %B* PIB PI= Polarity Equation (Only for NP): 		 MP gradient MP strength is initially "weak" → Analyte well retained Those with low retention → Elute at reasonable K' Strengthen MP over the course of separation Strongly retained species can be eluted → At a reasonable K" and R'
Example	 K'old/K'new= 10((P'old-P'new)/2) Look at K' of first and last peak K'old = (last peak - first peak)/first peak → K' = (2.8-1.8)/1.8 = 0.5 K'new → Want it at 10 		 MP≠constant → Changing strength K and K' ≠ constant Can no longer be predicted
	 2. Replace terms in equation ▶ K'new/K'old = 10/0.5 = 20 		

By shaylannxd

Not published yet. Last updated 20th June, 2022. Page 6 of 13. Sponsored by **ApolloPad.com** Everyone has a novel in them. Finish Yours! https://apollopad.com

Liquid Chromatography Cheat Sheet by shaylannxd via cheatography.com/149855/cs/32584/

Equilibrium-based separation

Carry throughout column

Does not use silica particles

Cation exchange column

Attach with a strong anion or cation

Sulfonic acid is protonated (SO3H)

Metal ions displace some of H⁺ from resin

Metal ions interact with SP

3. Unbind analyte from SP

Discreet soption and displacement process

1. SP sulfonic acid (IEX resin) > Anion surface particle

2. Inject sample with cation analytes \rightarrow Metal ion (M²⁺)

Introduce a higher concentration of protons behind

► H⁺ displace weakly bound analytes the move onto • Cation analytes is displace off of surface and

Wash column with acid solution {{fa-arrow-right}

Controlling Re	stention (cont)	Ion-Excha	inge (cont)
MP Selectivity	 Alter selectivity (α) by changing type of solvent Resolving power R= (α-1)(K'/(1+K'))(√N/4) Sensitive to selectivity → Critical pairs in peaks 	Basic Theory	 Ion-exchange Equilibrium-based sep Discreet soption and Carry throughout colu
	 Selectivity Depends on nature of MP Change selectivity = change type of MP 		Column Does not use silica pa Use polymer resin Attach with a strong a
	 P'old~P'new Overall retention is roughly the same 	Example	Using a strong anion SP ▶ Cation exchange colu
Chiral Separa	Selectivity of peaks change Selectivity changes cannot be predicted tion		 SP sulfonic acid (IEX n (SO3⁻) Wash column with ac Cations (H⁺) Sulfonic acid is proton
Basic Imp Theory Sep	ortant to bioanalyses and pharmaceutical separation aration of chiral species		 2. Inject sample with cati Metal ions interact wi Metal ions displace so
Chir ome Pos	al SP or chiral additives to MP → Separation of enanti- ers sible to separate structural isomers → Strength of		 3. Unbind analyte from S ▶ Introduce a higher co analytes → MP gradient
inter	raction changes as a function of isomer		 H⁺ displace weakly bo strongly bound analyte (o Cation analytes is dis
Ionic Species	 Small "hard" ions Inorganic ions Cannot use ion pairing Ions can interact with appropriate SP > Ionic SP 		Soludilize in MP

By shaylannxd

Not published yet. Last updated 20th June, 2022. Page 7 of 13.

Sponsored by ApolloPad.com Everyone has a novel in them. Finish Yours! https://apollopad.com

Liquid Chromatography Cheat Sheet by shaylannxd via cheatography.com/149855/cs/32584/

Ion-Exchange (cont)		Optimization (cont)	
	 4. Analytes move down the column in strength of MP ▶ Each type of analyte elute as a peak ▶ MP ahead of each analyte is too weak → Bound ▶ MP behind each analyte is too strong → Fully displace 		 3. Examine if peaks are within the acceptable region Examine if all analytes are well resolved 4. Consider if a gradient is required Presence of large area of empty baseline
Equilibrium Constant	 If it behaves like an equilibrium → There is an equilibrium constant Expect to behave like an LC → Produce peaks Ion-exchange equilibrium constant would behave 		 5. If needed Switch MP type to alter selectivity Gradient to reach acceptable retention and resolution
	 like a distribution constant Obtain similar result of chromatogram peaks MP controls retention 		6. Consider using additives in MPHelp alter selectivity
	Equation Kiex=[exchange&analyte]s/[analyte]m = Cs/Cm 		 If MP type/mix strength does not achieve required separation Change SP type May consider type of separation
Optimization		Summary of MP	Very powerful tool 🗲 Versatile
Process of Separation	 Carry out initial separation Choose a strong MP Ensure everything is eluted and fast separation 	Effects	 Control retention and selectivity Directly affects distribution constant MP strength = K'
	 2. Adjust MP strength Retention of last peak is within the right region Depending on the complexity of sample Simple sample A K' ~ 10 		 MP "strength" is polarity Effect are opposite in RP vs NP RP → Non-polar solvent (organic) = Stronger solvent NP → Polar solvent = Stronger solvent
	 Complex sample → K'~ 20 Do calculations for an estimate adjusting 		Ramped MP → GradientHelps dynamically adjust K'
	needed		Useful to make separation less intuitive → R↓ = K' ↓ ▶ Gradient runs → R ↑ = K' ↓
	By shavlannxd Not published vet		Sponsored by ApolloPad com

cheatography.com/shaylannxd/

Cheatography

Not Last

Not published yet. Last updated 20th June, 2022. Page 8 of 13. Sponsored by ApolloPad.com Everyone has a novel in them. Finish Yours! https://apollopad.com

Liquid Chromatography Cheat Sheet by shaylannxd via cheatography.com/149855/cs/32584/

LC Detector	5		LC Detectors (cont)	
Ideal Detectors	High sensitivity • Steep slope High stability • Minimal drift • Minimal noise on baseline Very low DL Long LDR			 D2 lamps Good broad UV source 185-400nm Spectrometer to isolate narrow band of wavelength More simple than FAA UV does not have to compensate for a flame
	Can accept MP over wide range Need reference to null out MP Fast response Independent of MP Easy to use, maintain and repair Inexpensive Selective/universal Can be either depending on pr Non destructive Can collect fractions	gradients operties		 2 sensors Sample diode (I) Intensity coming through the sample Reference diode (I₀) Intensity from the light source Equation A= -log(I/I₀)= -log(T) Chromatogram Abs vs time Use peak area for quantitation
1λ: UV- Vis Detector	Volume	omes constant and	Many λ: Photodiode array (PDA) Detector	Chromatogram Collect many chromatograms across many wavelength (a spectrum)
	we see a square shaped peak Pathlengths • ~5-10mm • Longer = better Bigger absorbance for same co lambert law) Window material	oncentration (beer		 Sensitivity Can choose/use chromatogram that provides the greatest sensitivity for each analyte Find wavelength where analyte has least interference from neighbouring peaks
	• Quartz By shaylannxd	Not published yet.		Sponsored by ApolloPad.com
	Last updated 20th Jun Page 9 of 13.		e, 2022.	Everyone has a novel in them. Finish Yours!

cheatography.com/shaylannxd/

https://apollopad.com

Liquid Chromatography Cheat Sheet by shaylannxd via cheatography.com/149855/cs/32584/

LC Detectors (cont)		LC Detectors (cont)		
Refractive Index (RI) Detector	Application	Evaporative Light Scatter (ELS) Detector	 How it works Uses nebulizer to produce aerosol MP evaporates → Leaves behind analyte fine crystals Scattering of light (usually laser) → Only when crystals are present 	
	 Rays not refracted Chromatogram If RI match (only MP) Full intensity reaches sensor If RI does not match (analyte eluting) Reduced intensity reaches sensor Plot signal vs time 		 Analyte Needs to produce crystals Very low volatility Can work for non-absorbing analytes Response is nearly uniform for all analytes 	
	 Properties ► Universal ► Sensitivity →~3 orders of magnitude less sensitive than UV ► Absorbance → Optically silent ► Reference flow → Limited gradient capability 		Buffers (MP) Must be volatile Restricts choices Can't use inorganic buffers: Leads to buffer salts Better than RI detector Higher sensitivity Longer LDR	
		LIV-Vis Detector Diagram		

Photodiode Array Chromatogram

C

By **shaylannxd**

Not published yet. Last updated 20th June, 2022. Page 10 of 13. Sponsored by **ApolloPad.com** Everyone has a novel in them. Finish Yours! https://apollopad.com

Liquid Chromatography Cheat Sheet by shaylannxd via cheatography.com/149855/cs/32584/

Refractive Index Detector Diagram			LC-MS (cont)			
	Mirror	Sensor		Mass spectrur Scanning m development Multiple rea fragments are	n node → Produce full spectrum → For method action monitoring (MRM) → Only selected measured → For quantitation	
LC-MS Properties	Electrospray ► Sample goes through nebulize ► High voltage is applied → Produced droplets Fine metal capillary tube ► ~0.5-1mm ► Connected to the outlet	r uces charged		Better than sir Lower DL Less interfer Longer LD Allows posit Better select Problem Q3 scans at spectra/s) Lowering reference	ngle quadrupole erences R tive ID of analyte ctivity with MRM across m/z range pretty slowly (1-30 esolution allows faster scanning → Can't get a	
	 Charged with high voltage Signal MP is pumped 		QTOF MS	full detailed sp Quadrupole tir	pectrum me of flight MS	
	 Charged droplets are attracted Droplets dry down in flight charge density until charge coulombic explosion 	to MS interface repulsion causes		Advantage Can scan 100 Any are aver than QQQ Allows more Higher mass Permits great LDR>5 order	10000 spectra/s averaged together to improve quality (better re analytes to be measured simultaneously ss accuracies and resolution eater ID power lers of magnitude	
Single Quadrupole MS	Mass spectrum Simple MP evaporates away → Leaves [M+H]⁺ ions → no fragm 	lents				
	ProblemDifficult for definitive IDPotential m/z overlap			Problem ► Not as prec ► Expensive	sise as QQQ	
Triple Quadrupole MS	Allows the production of fragments Contains Q1, Q2(CID) and Q3	S				
	Q1 → Parent ions are selected Q2(CID) → Collision induced diss ions collide with Ar/He/N2 (Create Q3 → Fragment ions are filtered/set to produce mass spectrum	ociation ➔ Selected es fragments) canned ➔ Detected				
By shaylannxd Not published yet. Last updated 20th Ju Page 11 of 13.		Not published yet. Last updated 20th Jun Page 11 of 13.	e, 2022.		Sponsored by ApolloPad.com Everyone has a novel in them. Finish Yours!	

cheatography.com/shaylannxd/

Yours! https://apollopad.com

Liquid Chromatography Cheat Sheet by shaylannxd via cheatography.com/149855/cs/32584/

COTOF MS Detector Diagram Cost COTOF MS Detector Diagram Immune from MP gradients? Summary and Applications Amendable to using IS? Advantage MP plays a critical role in controlling separation > Retention * "Strength" Concentration of analytes are high enough > Summary and Applications Concentration of analytes are high enough Advantage MP plays a critical role in controlling separation > Retention * "Strength" Contoine with sensitive detectors > Summary and Applications Combine with sensitive detectors Alvantage MP plays a critical role in controlling separation conditions > Within the same SP and column Conset analyte > Allow to quickly try different separation conditions Solver than GC > More quirements of volatile analyte Anti-dopping and forensics > Allow to quickly try different separation Solver than GC Concoditions Solver than GC > Allow to quickly try different separation Solver than GC Concodiciens Anti-dopping and forensics > Can choose type Contonse type > Can choose the amount of SP/unit of column Solver than GC Badvantage Much tower N c	Triple Quadrupole Detector Diagram		Summary and Applications (cont)		
CTOF MS Detector Diagram Sample capacity CTOF MS Detector Diagram Immune from MP gradients? Advantage MP plays a critical role in controlling separation Annendable to using IS? Advantage MP plays a critical role in controlling separation Combine with sensitive detectors No requirements of volatile analyte Combine with sensitive detectors Solver than GC Allow to quickly try different separation conditions No requirements of volatile analyte Anti-dopping and forensics Allow to quickly try different separation conditions No requirements of volatile analyte Solver than GC No requirements of volatile analyte Coan choose type Coan choose type Process control Can choose type Can choose type Proteomic Food and Beverages Nany LC have tow N > 1000-5000 Environmental Vitarnins Disadvantage Much lower N compared to GC-FSOT Contaminants Disadvantage Discuster or universal Presticides Discuster Discustre </td <td></td> <td></td> <td></td> <td>Cost Purchase Maintenance</td>				Cost Purchase Maintenance	
Clife MS Deleader Diagram Immune from MP gradients? Main and Applications Amendable to using IS? Summary and Applications A halytes soluble in liquid MP Advantage MP plays a critical role in controlling separation • Retention -> Stepright" • Selectivity -> Type" 2. Concentration of analytes are high enough Wide range of MP available 0. Combine with sensitive detectors Diverse set of separation conditions • Within the same SP and colurm • Allow to quickly try different separation conditions 0. Combine with sensitive detectors • Allow to quickly arrive to a newer optimization separation 0. Combine with sensitive detectors • Allow to quickly arrive to a newer optimization separation 0. Contaminants • Allow to quickly arrive to a newer optimization separation 0. Control • Allow to quickly arrive to a newer optimization separation 0. Process control • Can change particle size • Dector Food and Beverages • Proteomic Disadvantage Much lover N compared to GC-FSOT • Degrades R and + Overlapping peaks • Many LC have low N + 1000-5000 • Contaminants Dic Environmental • Pasticides • Industrial materials				Sample capacity	
Summary and Applications 1. Analytes soluble in liquid MP Summary and Applications 2. Concentration of analytes are high enough Advantage MP plays a critical role in controlling separation · Selectivity → "Type" . Can load larger volumes/concentration on columns · Selectivity → "Type" . Combine with sensitive detectors Wide range of MP available . Diverse set of separation conditions · Nithin the same SP and column . GC favored over LC · Allow to quickly try different separation conditions . LC > GC · Nithin the same SP and column . LC > GC · Allow to quickly try different separation conditions . LC > GC · Nithin the same SP and column . LC > GC · Nithin the same SP and column . LC > GC · Nithin the same SP and column . LC > GC · Nithin the same SP and column . LC > GC · Nithin the same SP and column . LC > GC · Nithin the same SP and column . Need to be solubils in MP · Needsto to be solubils in MP . Quality control · Can choose type . Can choose type · Can choose type . Can choose the amount of SP/unit of column · Easy to collect purified analyte . Po	CIOF MS Detector Diagram			Immune from MP gradients?	
Summary and Applications Advantage MP plays a critical role in controlling separation > Can load larger volumes/concentration on columns Advantage MP plays a critical role in controlling separation > Can load larger volumes/concentration on columns Numerical of MP available > Selectivity > "Type" > Combine with sensitive detectors > Diverse set of separation conditions > Within the same SP and column > Co C favored over LC > Allow to quickly try different separation conditions > Norequirements of volatile analyte > LC > GC > Allow to quickly arrive to a newer optimization separation > Contonose type > Anti-dopping and forensics > Allow to quickly arrive to a newer optimization separation > Can choose type > Anti-dopping and forensics > Can choose type > Can choose type > Rab > Rab > Can choose type > Can choose type > Proteomic > Can choose type > Can choose type > Proteomic > Disadvantage Much lower N compared to GC-FSOT > Degrades R and + Overlapping peaks > Proteomic > Many LC have low N + 1000-5000 Publications > Proteomic > Proteomic Diversioner Diversioner > Rab > Proteomic > Proteomic				Amendable to using IS?	
Summary and Applications 2. Concentration of analytes are high enough Advantage MP plays a critical role in controlling separation • Can load larger volumes/concentration on columns Advantage MP plays a critical role in controlling separation • Can load larger volumes/concentration on columns Selectivity → "Type" 3. Does sample require a high R' separation Wide range of MP available • C f avored over LC • Allow to quickly try different separation conditions • LC > GC • Allow to quickly try different separation conditions • LC > GC • Allow to quickly try different separation conditions • LC > GC • Allow to quickly try different separation conditions • LC > GC • Allow to quickly try different separation conditions • LC > GC • Allow to quickly try different separation conditions • LC > GC • Allow to quickly try different separation • Continuinan GC • Allow to quickly try different separation • Can choose the analyte • Needs to be soluble in MP • Quality control • Can change particle size • Can choose the amount of SP/unit of column • Can change particle size • Contaminants • Degrades R and ◆ Overlapping peaks • Many LC have low N ◆ 1000-5000			Key Factors if LC is useful	1. Analytes soluble in liquid MP	
> Selectivity > "Type" 3. Does sample require a high R' separation Wide range of MP available 6 C favored over LC Diverse set of separation conditions 4. Need to recover analyte Allow to quickly try different separation 1. CL > GC conditions Allow to quickly arrive to a newer optimization separation Slower than GC No requirements of volatile analyte Pharmaceutical No requirements of volatile analyte Pharmaceutical No requirements of volatile analyte Process control Can choose the amount of SP/unit of column R&D Easy to collect purified analyte Proteomic Can choose the amount of SP/unit of column Vitamins Easy to collect purified analyte Pesticides Disadvantage Much lower N compared to GC-FSOT Namy LC have low N > 1000-5000 Pesticides Detector Selective or universal DL Industrial materials	Summary and Ap Advantage	Pplications MP plays a critical role in controlling separation ▶ Retention ♣"Strength"		 2. Concentration of analytes are high enough Can load larger volumes/concentraton on columns Combine with sensitive detectors 	
Wide range of MP available > GC favored over LC Diverse set of separation conditions 4. Need to recover analyte Within the same SP and column > LC > GC Allow to quickly try different separation conditions > LC > GC Allow to quickly arrive to a newer optimization separation 5. Slower than GC No requirements of volatile analyte > Phoramaceutical No requirements of volatile analyte > Quality control Needs to be soluble in MP > Quality control Vider range of SP available > Process control Can choose type > Can choose type Can choose type > Can choose the amount of SP/unit of column Vidar range of SP available > Proteomic Can choose the amount of SP/unit of column > Vitamins Easy to collect purified analyte > Posticides Nany LC have low N > 1000-5000 > Pesticides Disadvantage Much lower N compared to GC-FSOT Namy LC have low N > 1000-5000 > Pesticides Pesticides > Industrial materials Comparison DL LDR LDR		 ▶ Selectivity → "Type" 		3. Does sample require a high R' separation	
I Diverse set of separation conditions 4. Need to recover analyte Within the same SP and column LC > GC Allow to quickly try different separation conditions Allow to quickly arrive to a newer optimization separation Separation Solwer than GC No requirements of volatile analyte Pharmaceutical No requirements of volatile analyte Pharmaceutical Needs to be soluble in MP Quality control Vider range of SP available Netabolic Can choose type Netabolic Can choose type Proteomic Can choose the amount of SP/unit of column Vitamins Proteomic Proteomic Proteomic Posticides Disadvantage Much lower N compared to GC-FSOT Negrades R and ↑ Overlapping peaks Environmental Nany LC have low N → 1000-5000 Pesticides Detector Selective or universal DL Industrial materials		Wide range of MP available		 GC favored over LC 	
 Allow to quickly try different separation conditions Allow to quickly arrive to a newer optimization separation Allow to quickly arrive to a newer optimization separation Allow to quickly arrive to a newer optimization separation No requirements of volatile analyte Needs to be soluble in MP Needs to be soluble in MP Can choose type Can choose type Can choose the amount of SP/unit of column Easy to collect purified analyte Degrades R and A Overlapping peaks Many LC have low N A 1000-5000 Detector DL LDR 		 Diverse set of separation conditions Within the same SP and column 		4. Need to recover analyte▶ LC > GC	
conditions Applications Applications Anti-dopping and forensics Applications Pharmaceutical separation Process control No requirements of volatile analyte Quality control Can choose type Metabolic Can choose type Proteomic Can choose the amount of SP/unit of column Food and Beverages Easy to collect purified analyte Posticides Disadvantage Much lower N compared to GC-FSOT Nany LC have low N → 1000-5000 Environmental Pesticides Industrial materials Detector Selective or universal DL LDR		Allow to quickly try different separation		5. Slower than GC	
Pharmaceutical separation No requirements of volatile analyte No requirements of volatile analyte Needs to be soluble in MP Wider range of SP available Can choose type Can choose type Can choose the amount of SP/unit of column Easy to collect purified analyte Disadvantage Much lower N compared to GC-FSOT Detector Selective or universal DL DL LDR		conditions	Applications	Anti-dopping and forensics	
 No requirements of volatile analyte No requirements of volatile analyte Needs to be soluble in MP Vider range of SP available Can choose type Can choose type Can choose the amount of SP/unit of column Can choose the amount of SP/unit of column Can choose the amount of SP/unit of column Vitamins Food and Beverages Posticides Posticides Contaminants Environmental Pesticides Industrial materials 		separation		 Pharmaceutical Process control Quality control R&D Metabolic Proteomic 	
Wider range of SP available Madb Can choose type Metabolic Can choose type Proteomic Can choose the amount of SP/unit of column Food and Beverages Can choose the amount of SP/unit of column Vitamins Easy to collect purified analyte Pesticides Disadvantage Much lower N compared to GC-FSOT Degrades R and \blacklozenge Overlapping peaks Environmental Many LC have low N \blacklozenge 1000-5000 Pesticides Detector Selective or universal DL LDR		No requirements of volatile analyte Needs to be soluble in MP 			
Food and Beverages Can choose the amount of SP/unit of column Easy to collect purified analyte Disadvantage Much lower N compared to GC-FSOT Degrades R and A Overlapping peaks Many LC have low N A 1000-5000 Detector Selective or universal DL LDR		 Wider range of SP available Can choose type Can choose particle size 			
Easy to collect purified analyte Vitamins Disadvantage Much lower N compared to GC-FSOT Degrades R and A Overlapping peaks Contaminants Many LC have low N A 1000-5000 Environmental Detector Selective or universal Comparison DL LDR LDR		 Can change particle size Can choose the amount of SP/unit of column 		Food and Beverages	
Disadvantage Much lower N compared to GC-FSOT ▶ Degrades R and ♠ Overlapping peaks ▶ Contaminants ▶ Many LC have low N ➡ 1000-5000 ▶ Pesticides Detector Selective or universal ▶ Industrial materials Comparison DL LDR LDR		Easy to collect purified analyte		 Vitamins Destisides 	
 Degrades R and Overlapping peaks Many LC have low N I 1000-5000 Detector Selective or universal Comparison DL LDR Environmental Environmental Pesticides Industrial materials 	Disadvantage	Much lower N compared to GC-FSOT		PesticidesContaminants	
Detector Selective or universal Comparison Industrial materials DL DL LDR DL		 ▶ Degrades R and ↑ Overlapping peaks ▶ Many LC have low N → 1000-5000 		Environmental Pesticides 	
DL LDR	Detector Comparison	Selective or universal		Industrial materials	
LDR		DL			
		LDR			

By shaylannxd

Not published yet. Last updated 20th June, 2022. Page 12 of 13. Sponsored by **ApolloPad.com** Everyone has a novel in them. Finish Yours! https://apollopad.com

Liquid Chromatography Cheat Sheet by shaylannxd via cheatography.com/149855/cs/32584/

Summary and Applications (cont)

R&D

- Organic synthesis
- Catalysis

Industrial

Feedstock

By shaylannxd

Not published yet. Last updated 20th June, 2022. Page 13 of 13. Sponsored by **ApolloPad.com** Everyone has a novel in them. Finish Yours! https://apollopad.com