

Basic Theory	
Gas Chromatog-	SP → Liquid
raphy	
	MP→ Inert gas

▶ No role in separation

▶ Only directs analyte down column (carrier gas)

 $D_{\text{m}} >>> D_{\text{S}}$

▶ CmU ~ 0

Flow rate

▶ Dictate by choice of SP (thickness, proper-

► Modest plate height ~1mm (↑ L = ↑N)

Theory Equations

$$C_m U = \frac{f_m(k')d_p^2}{D_m} U \approx 0$$

Column Type

Packed Packed full of particles

Put SP on particles

MP pushes through packed bed

Tubing

▶ Glass, stainless steel, etc.

▶ Inert = not part of separation

Wall Coated Open Tubular (WCOT)

Inside wall of quartz/glass tube

▶ Chemically roughen

▶ ★ Surface area

Coated with SP

Fused Silica Open Tubular (FSOT)

SP coating on wall of long thin

tube

Smooth wall

Diameter ~ 75-200 um

Column Diagram

GC Systems

Sample Introduce into injector port

▶ Vaporize sample

Vaporized analyte swept into column

Mobile

High pressure cylinders

phase

Use a gas flow regulator

▶ Regulate the pressure

Detector

Detect components of the mixture being eluted off the chromatography column

▶ Some may require a reference flow

Oven

Separation occurs

▶ Controlled temperature

▶ Fan → Circulates air and controls temperature

By shaylannxd

Not published yet. Last updated 18th June, 2022. Page 1 of 10.

Sponsored by Readable.com Measure your website readability! https://readable.com

GC System Diagram

Requirements of SP (cont)		
	Prefer a low volatile solvent → Don't want SP to vaporize in oven	
Thermal Stability	SP in column	
	Don't want thermal breakdown products	
Inert/Rea- ctive	Don't want analyte to react with SP	
	Only want to interact	

Split Flow Injector

Sample dissolved in volatile solvent

Collect sample into syringe and inject through rubber septum

- ▶ Seals injector for analyte to go into column
- ▶ Protects from outside atmosphere
- ▶ Bad peak shapes = hole in septum

Use a heat block to "flash" sample into vapour

- ▶ ~50-100C hotter than oven
- ▶ Need to vaporize sample

GC systems design to operate with 3 main columns

- ▶ Each column has a different flow rate
- ▶ Adjust based on column used

FSOT/WCOT

- ▶ Can't handle large sample mass
- Small diameter
- ▶ Limited SP
- ▶ Limited volume capacity
- ▶ Control by valve system

Split flow outlet

- Avoid overloading the column
- ▶ Packed → Set at 0 (closed)
- ► FSOT/WCOT → Split flow ratio → Depends on [analyte] in

injection volume

Split Flow The split / splitess injector The split / splitess injector Converges Option and in the control of splites in page solded Option (Splites) injector Option (Splites) i

Requirements of SP	

Only want to interact		
Stationary Phase		
Siloxane Polymer	Low volatility	
	Thermally stable bond	
	Contains a silicone backbone Close to inert	
	Can be derivatized	
	Add pendant functional groupsTune selectivity/solubility/retentionAdjust polarity	
Non-Polar	Poly(dimethyl)siloxane (PDMS) • Good quality	
	Flurocarbons	
Polar	Can replace dimethyl/methyl groups • CN,CO,OH	
Phenyl Groups (Benzene Ring)	Non-polar	
	π e⁻ → delocalized	
	When approach by polar molecules ▶ e⁻ reorganized → Induced dipole interactions ▶ Can behave polar with polar molecules	
	(vice versa)	
Chiral Moiety	Chiral-chiral interactions on SP	
	Rise to selectivity of 1 enantiomer over	

another

Solvent Must dissolve analyte Bad SP ▶ Unretained

Affects R'~0No separation

Volatility A substance with high volatility is more likely to exist as a vapour

A substance with low volatility is more likely to be a liquid or solid

By **shaylannxd**

Not published yet. Last updated 18th June, 2022. Page 2 of 10. Sponsored by **Readable.com**Measure your website readability!
https://readable.com

Siloxane Polymer

$$\begin{array}{c} R \\ -Si - O - Si - O - \\ R \\ R \\ R \\ H_3C - Si - O - Si - O - \\ CH_3 - CH_3 - CH_3 \\ CH_3 - CH_3 - CH_3 \\ Deby(dimethyl)sidvane \\ \end{array}$$

Minimize Loss of SP

Bonded

Process of the SP polymer is attached to

Phase

▶ Silica support particle

▶ Wall of a capillary

A liquid-liquid chromatography method in which a stationary phase is covalently bound to a carrier particle

Cross--

Polymer attached to wall

Linked

Phase

Polymer cross-linked with each other

Critical for separation

Produce more rigidty, hardness and • Melting point

▶ Formation of covalent bonds

Issue

Most SP are non-polar and silica support surface are polar

▶ Not much intertaction

Uses phases to prevent issue of contact

Use silane reaction to bond/cross-link

Silane

Use to anchor/bond silicones to silica surfaces

Reaction

▶ In packing materials (particles)

▶ FS capillaries

Use to deactivate silanols

Same chemistry for polymerization and cross-linking

Minimize Loss of SP (cont)

Silanol

- Very polar
- ▶ Expose on surface of silica
- ▶ Disagree with SP polarity
- ▶ Competition for polar analyte

Deactivation chemistry

- ▶ Use dichloro dimethyl silane
- ▶ Use ethanol/MeOH
- ▶ Create less polar surface

Inertness of Column

Residual silanols

- ▶ React strongly to polar compounds
- ▶ Produce tailing peaks
- ▶ Undesirable interactions in column

Deactivation of Silanol

Silane Reaction Mechanism

By shaylannxd

Not published yet. Last updated 18th June, 2022.

Page 3 of 10.

Sponsored by Readable.com

Measure your website readability!

https://readable.com

Controlling Retent	tion	Controlling Retent	ion (cont)
Retention	Controls resolving power (R') ▶ R' depends on K'		Adjust temperature during course of separation
	 K' depends on separation conditions Want all peaks to fall in "ideal range" of retention 		Resolution imporves under better retention conditions for the analyte
	 1-10 MP is inert Only function to control retention Equilibrium constant = thermodynamic property 		Change in gradient steep → Improves separation ► Shorten separation time ► Increase resolution ► As a function of temperature
	Temperature ▶ Alter overall retention	Round-Up of T Programming	Powerful tool for controlling K'
	Type of SP		Directly affects distribution constant
	▶ Alter selectivity		↑ Temperature = ↓ K'
Impact of Different	Isothermal separation • A thermodynamic process, in which the		Ramped (gradient) temperature is used to adjust K'
 Less thermal energy Analyte spends more time in SP More time in column Clearer separation Temperature = ↑ Resolution = ↑ Outime Can become excessive Needs to adjust separation as it process. 	 ◆ Temperature = ◆ Thermal energy available ▶ Less thermal energy ▶ Analyte spends more time in SP 		Make GC less intuitive ► ▼ R= {{fa-arrow down}} K' (general) ► ↑ R= ▼ K' (T programming) ► K'=f(T)
			Separation limited by $\Delta T/\Delta t$ (ramp rate)
	◆ Temperature = ↑ Resolution = ↑ Overall		Column lifetime is shorter at higher temperature
	 Can become excessive Needs to adjust separation as it proceeds 	Other Factors	K'=K(Vs/Vm) ▶ SP thickness ▶ Total mass of SP
	◆ Temperature → Favors SP		FSOT columns
	↑ Temperature → Favors MP		► Calculate phase ratio (Vs/Vm)
Different Ramp Rates	Altered tr and resolution independently		

By **shaylannxd**

Not published yet. Last updated 18th June, 2022. Page 4 of 10. Sponsored by **Readable.com**Measure your website readability!
https://readable.com

Graphs with Different Temperature

Ramp Rate Graphs

GC Detectors

Requir-

Sensitivity

ements

- ▶ 10⁻⁸-10⁻¹⁵ g analyte/s
- ▶ Packed → All sample used → Decrease efficiency = broader peaks
- ► FSOT → Split flow injector (5-10% sample used)→ Increase efficiency = narrow peaks

Stability

- ► Noise on baseline → Smooth {[fa-arrow-right}} Detect the smallest peaks → Minimal DL
- ▶ Drift → No baseline (goes up and down)

LDR

▶ 5-8 orders of magnitude

GC Detectors (cont)

Can accept MP over a wide temperature range

- ▶ T Programming {[fa-arrow-right}} Improves separation
- ▶ Immune to T change
- ▶ Compensate T change → Require reference gas flow

Fast response and independent of T

Simple to use, maintain, repair

Selective/Universal

- ▶ Detect analyte of interest (S)
- ▶ Detect all species (U)

Non-destructive

Flame Ionization Detector (FID)

Analyte elute from column

- ▶ Mix with H2 gas
- Combusted

Reduced carbons

Produce ions that alter conductivity of flame and alter current

Signal proportional to # of reduced carbons

Mass sensitive

Oxidized and e capturing species

- ▶ No-little signal
- ▶ Cannot be oxidized further

Non-combustible gasses

- ▶ No signal
- Already oxidized

High sensitivity

- ▶ 10^-13& g/s
- ▶ use FSOT/WCOT

Large LDR

▶ 7 orders of magnitude

Destructive

No reference flow

FID Diagram

By shaylannxd

Not published yet.
Last updated 18th June, 2022.

Page 5 of 10.

Sponsored by **Readable.com**Measure your website readability!

https://readable.com

Electron Capturing Detector (ECD)

An ionization detector

▶ response is based upon the ability of molecules with certain functional groups to capture electrons generated by the radioactive source.

Radioactive source → ⁶³Ni

▶ Emits beta-particles

When disintegration occurs

- ▶ Large energy release
- ▶ Beta particle emission
- ▶ Impacts any filler gas and/or MP present in detector and ionize it

Use a N2 make-up gas

- ▶ Get ionized by high energy
- ▶ Ionized N2 gas → Pass an electric current through detector cell

In absence of analyte with e capturing groups

▶ A constant current established through the detector

When analyte with e capturing groups enters cell

- ▶ Quench some ionization
- ▶ Reduce conductivity of gas = reduce current in cell

Selective detector

- analytes with a high electron affinity
- ▶ Sensitive for species that can disrupt ionization of N2 gas
- ▶ Pesticides → halides, peroxides, nitro groups

ECD Diagram

Thermal Conductivity Detector(TCD)

Properties

Signal proportional to change in heat capacity

▶ Difference between MP and MP+analyte are relatively small

Universal detector

- ▶ Detect solvent as well
- ► Undersirable → Solvent order of magnitude is more concentrated than analyte
- ▶ Result in large solvent peaks and small analyte peaks
- ▶ If analyte is not well retained → Interfered by solvent

Thermal Conductivity Detector(TCD) (cont)

Modest sensitivity ~ 10^{-9 to -10} g/ml

▶ Less sensitive than FID

Modest LDR

Very short linearity

Non-destructive

Require a reference flow

Basic Theory Based on ability of the

Based on ability of the gas exciting the column to

absorb heat

Contains thin filament

electrically heated

▶ As heat capacity of gas changes (MP vs

MP+analyte), so does the T of the filament

Resistance of thin filament

- ▶ T changes the resistance
- ▶ Resistance changes the current of the circuit
- → Current is VERY sensitive to T

Reference

Flow (Type 1)

To compensate for the T of MP coming from the

- ▶ T is changing with T programmed elution
- ▶ left section of diagram

Equation

▶ Vout1 = Vapplied * (Rref/(Rcolumn+Rref))

If Rcolumn = Rref

- ▶ two resistors are "balanced"
- → The signal from the column is coming from the
- ▶ Vout1=(1/2)Vapp

C

By shaylannxd

Not published yet.
Last updated 18th June, 2022.
Page 6 of 10.

Sponsored by Readable.com

Measure your website readability!

https://readable.com

TCD Diagram

Thermal Conductivity Detector(TCD) (cont)		
	If Rcolumn ≠ Rref Analyte's heat capacity changes T heating or cooling of filament Vout1 increases as analyte elutes As Rcolumn gets closer to 0, Vout1 gets closer to Vapp	
Reference Flow (Type 2)	Opposite concept as reference flow type 1 • right section of diagram	
	<pre>Equation</pre>	
	If Rcolumn = Rref ▶ two resistors are "balanced" → The signal from the column is coming from the MP ▶ Vout1=(1/2)Vapp	
	If Rcolumn ≠ Rref ► Analyte's heat capacity changes T → Heating or cooling of filament ► Vout2 decreases as analyte elutes → As Rcolumn gets closer to 0, Vout2 gets closer to 0	
Reference Flow (Type 3)	Type 1 and Type 2 TCD operating together ▶ With separate power supplies	
	If Rcolumn = Rref ▶ two resistors are "balanced" ♣ The signal from the column is coming from the MP ▶ Vout1=(1/2)Vapp	

GC-MS Properties Versatile Provide identification power Have to run known standards (spiked) Electron beam ionization M⁺ and fragments Excellent DL Depending on instrument and analyte ~ 2-20 picog injected

Concentration DL in sample

• Depends on sample work-up

Dependent on instrument4-6 orders of magnitude

Long LDR

C

By shaylannxd

Not published yet.
Last updated 18th June, 2022.
Page 7 of 10.

Sponsored by **Readable.com**Measure your website readability!
https://readable.com

GC-MS (cont)

Selective

- ▶ Less interferences
- ▶ Filters out MP signal

Destructive

Expensive

Basic

Quadruple MS

Theory

▶ Contains 2 positive and 2 negative poles

Movement of M⁺

- ▶ M⁺ travels in a sinusoidal path
- ▶ If M⁺ is too light or too heavy, it is kicked out of quadrupole
- → b/c they are not really able to respond to polarity change
- ▶ How to fix this
- → Quickly change the frequency and voltage of the poles
- → Can quickly scan through all m/z ratio to obtain mass spectrum

Spectrum generated

- ▶ Total ion current (TIC)
- → Easiest way
- → Sum of all ion signals that passes through
- → Acts as a universal detector: does not filter out MP
- → Tells you how many species are present
- ▶ Extracted mass spectra
- → Take a slice of TIC peak and see its fragments

GC-MS (cont)

Isotopes

- ▶ Parent ion
- → Most prominent and heaviest
- Isotopes
- → Daughter peak from most prominent peaks
- → can provide more info depending on its ratio with parent peak
- ▶ Isotopically labelled analytes
- → Replacing parts of molecule with deuterium
- → Produces a known mass higher than the original mass
- → Compare spectrum with orignal

Positive identification

- ▶ Compare experimental spectrum with the "real" analyte spectrum
- ▶ 3 steps
- → Correct mass of molecule?
- → Correct set of fragments?
- → Correct fragment intensities?

Quantitation

- ▶ Usually multiple ions monitored/measured
- → Validate ratio of peaks at the correct m/z ratio

Column bleed

- ▶ SP is boiling and bleeding out
- ▶ Leads to a rise in baseline
- → Not good
- ▶ How to fix it
- ▶ Running at low T
- → Purchase column made specifically for MS (\$\$\$)

By shaylannxd

Not published yet.
Last updated 18th June, 2022.
Page 8 of 10.

Sponsored by **Readable.com**Measure your website readability!
https://readable.com

GC-MS Diagram

Key Factors and Applications

When will

1. Analyte

GC be useful

▶ Needs to be volatile

- ▶ Not proteins → Unstable at high temperature
- ▶ Silation reaction → Produce volatile products (Risk of contamination, loss, produce new products)
- ▶ Needs to be stable → Stable enough to transit the column
- 2. High enough concentration to detect
- ▶ Packed columns: great sample capacity but low resolving power and resolution
- ▶ FSOT: lower capacity (split flow) but high resolving power and resolution
- ▶ Detectors: Has a good sensitivity
- 3. Does sample require high R' separation
- ▶ Depends on the type of detector
- ▶ Universal = high R
- ▶ Selective = low R
- 4. Generally faster than LC

Applications

Anti-dopping and forensics

BAC (Crime/forensics labs)

Pharmaceuticals

- ▶ Process control
- Quality control
- ▶ Research and development

Key Factors and Applications (cont)

Food and Beverages

- ▶ Wine/alcohol
- ▶ Pesticides

Environmental

- Pesticides
- ▶ PAH and industrial solvents
- ▶ Oil/hydrocarbon spills

R&D

- Organic synthesis
- ► Catalysis (monitor products)

Industrial

- ▶ Feedstock
- Off gassing

By **shaylannxd**

Not published yet. Last updated 18th June, 2022. Page 9 of 10.

cheatography.com/shaylannxd/

Sponsored by Readable.com Measure your website readability!

https://readable.com