Gas Chromatography Cheat Sheet by shaylannxd via cheatography.com/149855/cs/32547/

Basic Theory		Column Type
Gas Chromatog- raphy	SP 🗲 Liquid	Wall Coated ((WCOT)
	MP → Inert gasNo role in separation	
	 Only directs analyte down column (carrier gas) 	Fused Silica ((FSOT)
	Dm >>> Ds	
	► CmU ~ 0	
	Flow rate Dictate by choice of SP (thickness, proper- 	Column Diagr
	4:)	

- ties)
- Modest plate height ~1mm (↑ L = ↑N)

Column Type	
Packed	Packed full of particles
	Put SP on particles
	MP pushes through packed bed
	Tubing Glass, stainless steel, etc.

Inert = not part of separation

By shaylannxd

Not published yet. Last updated 18th June, 2022. Page 1 of 10.

Sponsored by ApolloPad.com Everyone has a novel in them. Finish Yours! https://apollopad.com

cheatography.com/shaylannxd/

Open Tubular Inside wall of quartz/glass tube Chemically roughen Surface area Coated with SP Open Tubular SP coating on wall of long thin tube Smooth wall

Diameter ~ 75-200 um

ım

(cont)

GC Systems		
Sample	 Introduce into injector port Vaporize sample Vaporized analyte swept into column 	
Mobile phase	High pressure cylindersUse a gas flow regulatorRegulate the pressure	
Detector	Detect components of the mixture being eluted off the chromatography columnSome may require a reference flow	
Oven	 Separation occurs Controlled temperature Fan → Circulates air and controls temperature 	

Gas Chromatography Cheat Sheet by shaylannxd via cheatography.com/149855/cs/32547/

GC System Diagram

Cheatography

Split Flow Injector

Sample dissolved in volatile solvent

Collect sample into syringe and inject through rubber septum

- Seals injector for analyte to go into column
- Protects from outside atmosphere
- Bad peak shapes = hole in septum

Use a heat block to "flash" sample into vapour

- ~50-100C hotter than oven
- Need to vaporize sample

GC systems design to operate with 3 main columns

- Each column has a different flow rate
- Adjust based on column used

FSOT/WCOT

- Can't handle large sample mass
- Small diameter
- Limited SP
- Limited volume capacity
- Control by valve system

Split flow outlet

- Avoid overloading the column
- Packed > Set at 0 (closed)
- ▶ FSOT/WCOT → Split flow ratio → Depends on [analyte] in injection volume

Requirements of SP (cont) Prefer a low volatile solvent → Don't want SP to vaporize in oven Thermal SP in column Stability Don't want thermal breakdown products Inert/Rea Don't want analyte to react with SP ctive Only want to interact

Stationany Dhase		
Stationary Phase		
Siloxane Polymer	Low volatility	
	Thermally stable bond	
	Contains a silicone backbone	
	Close to inert	
	 Can be derivatized 	
	Add pendant functional groups Tune selectivity/solubility/retention Adjust polarity 	
Non-Polar	Poly(dimethyl)siloxane (PDMS)	
	 Good quality 	
	Flurocarbons	
Polar	Can replace dimethyl/methyl groups CN,CO,OH 	
Phenyl Groups (Benzene Ring)	Non-polar	
	πe^{-} delocalized	
	 When approach by polar molecules e⁻ reorganized → Induced dipole interactions Can behave polar with polar molecules (vice versa) 	
Chiral Moiety	Chiral-chiral interactions on SP	
	Rise to selectivity of 1 enantiomer over another	

Requirements of SP

	or solid	
	A substance with low volatili	ty is more likely to be a liquid
	vapour	
Volatility	A substance with high volati	lity is more likely to exist as a
	No separation	
	Affects R'~0	
	Unretained	
	Bad SP	
Solvent	Must dissolve analyte	

Page 2 of 10.

cheatography.com/shaylannxd/

Everyone has a novel in them. Finish Yours! https://apollopad.com

Gas Chromatography Cheat Sheet by shaylannxd via cheatography.com/149855/cs/32547/

Siloxane Polymer		Minimize Loss of SP	(cont)
			 Silanol Very polar Expose on surface of silica Disagree with SP polarity Competition for polar analyte
	$\begin{array}{c} H_{5}C=\sum_{j=1}^{j-1} C=\sum_{j=1}^{j-1} C=\sum_{j=1}^{j-1} C=J_{3}\\ CH_{5}\\ poly(dmethylysiowane \end{array}$		 Deactivation chemistry Use dichloro dimethyl silane Use ethanol/MeOH Create less polar surface
Minimize L	loss of SP	Inertness of Column	Residual silanols
Bonded Phase	Process of the SP polymer is attached toSilica support particleWall of a capillary		 React strongly to polar compounds Produce tailing peaks Undesirable interactions in column
	A liquid-liquid chromatography method in which a	Deactivation of Silan	
	stationary phase is covalently bound to a carrier particle		
Cross Linked Phase	Polymer attached to wall		
	Polymer cross-linked with each otherCritical for separation		Dichloro Dimethyl silane
	 Produce more rigidty, hardness and Melting point Formation of covalent bonds 		
Issue	Most SP are non-polar and silica support surface are polar Not much intertaction		Ethanol MeOH
	Uses phases to prevent issue of contact		H ₃ C O
	Use silane reaction to bond/cross-link		o~ `o~ `o~ `o
Silane Reaction	Use to anchor/bond silicones to silica surfacesIn packing materials (particles)FS capillaries	Silane Reaction Mec	hanism
	Use to deactivate silanols		Terminal <u>silanols</u>
	Same chemistry for polymerization and cross-linking		

Not published yet.

Page 3 of 10.

Last updated 18th June, 2022.

Sponsored by **ApolloPad.com** Everyone has a novel in them. Finish Yours! https://apollopad.com

rface of silica

cheatography.com/shaylannxd/

By shaylannxd

Cheatography

Gas Chromatography Cheat Sheet by shaylannxd via cheatography.com/149855/cs/32547/

Controlling Retention		Controlling Retention (cont)	
Retention	Controls resolving power (R') R' depends on K' 		Adjust temperature during course of separation
	 K' depends on separation conditions Want all peaks to fall in "ideal range" of retention 		Resolution imporves under better retention conditions for the analyte
	 1-10 MP is inert Only function to control retention Equilibrium constant = thermodynamic property 		 Change in gradient steep → Improves separation Shorten separation time Increase resolution As a function of temperature
	Temperature Alter overall retention 	Round-Up of T Programming	Powerful tool for controlling K'
	Type of SP		Directly affects distribution constant
	 Alter selectivity 		↑ Temperature = ↓ K'
Impact of Different	Isothermal separation A thermodynamic process, in which the 		Ramped (gradient) temperature is used to adjust K'
Temperature temperature ↓ Tem Less Ana	 Temperature of the system remains constant Temperature = Thermal energy available Less thermal energy Analyte spends more time in SP 		 Make GC less intuitive
	 More time in column Clearer separation 		Separation limited by $\Delta T/\Delta t$ (ramp rate)
	✓ Temperature =↑ Resolution = ↑ Overall		Column lifetime is shorter at higher temper- ature
	 Can become excessive Needs to adjust separation as it proceeds 	Other Factors	K'=K(Vs/Vm) ▶ SP thickness
	✤ Temperature ➔ Favors SP		
	↑ Temperature → Favors MP		 Calculate phase ratio (Vs/Vm)
Different Ramp Rates	Altered tr and resolution independently		

С

By shaylannxd

Not published yet. Last updated 18th June, 2022. Page 4 of 10. Sponsored by **ApolloPad.com** Everyone has a novel in them. Finish Yours! https://apollopad.com

Gas Chromatography Cheat Sheet by shaylannxd via cheatography.com/149855/cs/32547/

Cheatography

Graphs with Different Temperature

Ramp Rate Graphs

GC Detectors

Requir- Sensitivity

ements \bullet 10⁻⁸-10⁻¹⁵ g analyte/s

Packed All sample used Decrease efficiency = broader peaks

► FSOT → Split flow injector (5-10% sample used) → Increase efficiency = narrow peaks

Stability

 Noise on baseline > Smooth {[fa-arrow-right}] Detect the smallest peaks > Minimal DL

Drift > No baseline (goes up and down)

LDR

▶ 5-8 orders of magnitude

GC Detectors (cont)

Can accept MP over a wide temperature range

- T Programming {[fa-arrow-right}] Improves separation
- Immune to T change
- ▶ Compensate T change → Require reference gas flow
- Fast response and independent of T

Simple to use, maintain, repair

Selective/Universal

- Detect analyte of interest (S)
- Detect all species (U)

Non-destructive

Flame Ionization Detector (FID)

Analyte elute from column

- Mix with H2 gas
- Combusted

Reduced carbons

Produce ions that alter conductivity of flame and alter current

Signal proportional to # of reduced carbons

Mass sensitive

Oxidized and e⁻ capturing species

- No-little signal
- Cannot be oxidized further

Non-combustible gasses

- No signal
- Already oxidized

High sensitivity

- ▶ 10^-13& g/s
- use FSOT/WCOT

Large LDR

7 orders of magnitude

Destructive

No reference flow

FID Diagram

By shaylannxd

Not published yet. Last updated 18th June, 2022. Page 5 of 10. Sponsored by **ApolloPad.com** Everyone has a novel in them. Finish Yours! https://apollopad.com

f s

Ś

Gas Chromatography Cheat Sheet by shaylannxd via cheatography.com/149855/cs/32547/

Electron Capturing Detector (ECD)	Thermal Conductivity Detector(TCD) (cont)		
 response is based upon the ability of molecules with certain unctional groups to capture electrons generated by the radioactive ource 		Modest sensitivity ~ 10 ^{-9 to -10} g/ml Less sensitive than FID Modest LDR Very short linearity 	
Radioactive source → ⁶³ Ni ► Emits beta-particles		Non-destructive Require a reference flow	
 Vhen disintegration occurs Large energy release Beta particle emission 	Basic Theory	Based on ability of the gas exciting the column to absorb heat	
 Impacts any filler gas and/or MP present in detector and ionize it Jse a N2 make-up gas Get ionized by high energy Japired N2 gas an electric surrent through detector cell 		Contains thin filament electrically heated As heat capacity of gas changes (MP vs MP+analyte), so does the T of the filament	
 A constant current established through the detector When analyte with e⁻ capturing groups 		 Resistance of thin filament T changes the resistance Resistance changes the current of the circuit 	
 Quench some ionization Reduce conductivity of gas = reduce current in cell Selective detector analytes with a high electron affinity 	Reference Flow (Type 1)	 Current is VERY sensitive to 1 To compensate for the T of MP coming from the oven T is changing with T programmed elution Ieft section of diagram 	
 Sensitive for species that can disrupt ionization of N2 gas Pesticides → halides, peroxides, nitro groups 		Equation Vout1 = Vapplied * (Rref/(Rcolumn+Rref)) 	
CD Diagram		<pre>If Rcolumn = Rref two resistors are "balanced" The signal from the column is coming from the MP Vout1=(1/2)Vapp</pre>	

Thermal Conductivity Detector(TCD)

Properties Signal proportional to change in heat capacity

 Difference between MP and MP+analyte are relatively small

Universal detector

-
- Detect solvent as well
- ► Undersirable → Solvent order of magnitude is more concentrated than analyte
- Result in large solvent peaks and small analyte

peaks

If analyte is not well retained > Interfered by

solvent

By shaylannxd

Not published yet. Last updated 18th June, 2022. Page 6 of 10. Sponsored by **ApolloPad.com** Everyone has a novel in them. Finish Yours! https://apollopad.com

Gas Chromatography Cheat Sheet by shaylannxd via cheatography.com/149855/cs/32547/

Thermal Conductivity Detector(TCD) (cont)		Thermal Conductivity Detector(TCD) (cont)		
	If Rcolumn ≠ Rref Analyte's heat capacity changes T → heating or cooling of filament Vout1 increases as analyte elutes → As Rcolumn gets closer to 0, Vout1 gets closer to Vapp		<pre>If Rcolumn ≠ Rref As analyte elutes Vout1 increases Vout2 decreases Vout1 and Vout2 have same magnitude, opposite signs</pre>	
Reference Flow (Type 2)	 W Opposite concept as reference flow type 1 right section of diagram 		 Taking the difference of the two will double the V measured Double the signal for the same effort 	
	Equation Vout2 = Vapplied * (Rcolumn/(Rcolum n+Rref)) 	Reference Flow (Type 4)	w Same as Type 3, but with a single power supply	
	<pre>If Rcolumn = Rref two resistors are "balanced" The signal from the column is coming from the MP</pre>		 Wheatstone bridge Name of this circuit Common approach for detecting VERY small change in resistance Advantage: Doubles the signal magnitude 	
	<pre>If Rcolumn ≠ Rref Analyte's heat capacity changes T Heating or cooling of filament Vout2 decreases as analyte elutes As Rcolumn gets closer to 0, Vout2 gets closer to 0</pre>	TCD Diagram		
Reference Flow (Type 3)	Type 1 and Type 2 TCD operating together With separate power supplies 	GC-MS Properties	Versatile	
	<pre>If Rcolumn = Rref two resistors are "balanced" The signal from the column is coming from the MP</pre>		 Provide identification power Have to run known standards (spiked) Electron beam ionization M⁺ and fragments Excellent DL 	
			 Depending on instrument and analyte ~ 2-20 picog injected 	

Concentration DL in sample

Depends on sample work-up

Long LDR

- Dependent on instrument
- ▶ 4-6 orders of magnitude

Sponsored by **ApolloPad.com** Everyone has a novel in them. Finish Yours! https://apollopad.com

By shaylannxd

Not published yet. Last updated 18th June, 2022. Page 7 of 10.

Gas Chromatography Cheat Sheet by shaylannxd via cheatography.com/149855/cs/32547/

GC-MS (cont)		GC-MS (cont)	
	Selective Less interferences Filters out MP signal Destructive Expensive	 Isotopes ▶ Parent ion → Most prominent and heaviest ▶ Isotopes → Daughter peak from most prominent peaks > can provide more inferdemending on its ratio with parent peak 	
Basic Theory	Basic Quadruple MS Fheory • Contains 2 positive and 2 negative poles Movement of M ⁺ • M ⁺ travels in a sinusoidal path	 Isotopically labelled analytes Replacing parts of molecule with deuterium Produces a known mass higher than the original mass Compare spectrum with orignal 	
 If M⁺ is too light or too heavy, it is kicked out of quadrupole ⇒ b/c they are not really able to respond to polarity change How to fix this ⇒ Quickly change the frequency and voltage of the poles → Can quickly scan through all m/z ratio to obtain mass spectrum 	 Positive identification Compare experimental spectrum with the "real" analyte spectrum 3 steps Correct mass of molecule? Correct set of fragments? Correct fragment intensities? 		
	 Can quickly scan through all m/z ratio to obtain mass spectrum 	Quantitation ► Usually multiple ions monitored/measured ► Validate ratio of peaks at the correct m/z ratio	
 Spectrum generated Total ion current (TIC) Easiest way Sum of all ion signals that passes through Acts as a universal detector: does not filter out MP signal Tells you how many species are present Extracted mass spectra Take a slice of TIC peak and see its fragments 		 Column bleed SP is boiling and bleeding out Leads to a rise in baseline Not good How to fix it Running at low T → Purchase column made specifically for MS (\$\$\$) 	
	By shaylannxd Not published yet.	Sponsored by ApolloPad.com	

cheatography.com/shaylannxd/

Not published yet. Last updated 18th June, 2022. Page 8 of 10. Sponsored by **ApolloPad.com** Everyone has a novel in them. Finish Yours! https://apollopad.com

Gas Chromatography Cheat Sheet by shaylannxd via cheatography.com/149855/cs/32547/

GC-MS Diagram

Key Factors and Applications When will 1. Analyte GC be Needs to be volatile useful ▶ Not proteins Unstable at high temperature Silation reaction Produce volatile products (Risk of contamination, loss, produce new products) ▶ Needs to be stable → Stable enough to transit the column 2. High enough concentration to detect Packed columns: great sample capacity but low resolving power and resolution FSOT: lower capacity (split flow) but high resolving power and resolution Detectors: Has a good sensitivity 3. Does sample require high R' separation Depends on the type of detector Universal = high R Selective = low R 4. Generally faster than LC Applic-Anti-dopping and forensics ations BAC (Crime/forensics labs) Pharmaceuticals Process control Quality control Research and development

By shaylannxd

Not published yet. Last updated 18th June, 2022. Page 9 of 10.

Sponsored by **ApolloPad.com** Everyone has a novel in them. Finish Yours! https://apollopad.com

cheatography.com/shaylannxd/

Key Factors and Applications (cont)

Food and Beverages

- ▶ Wine/alcohol
- Pesticides

Environmental

- Pesticides
- PAH and industrial solvents
- Oil/hydrocarbon spills

R&D

- Organic synthesis
- Catalysis (monitor products)

Industrial

- Feedstock
- Off gassing