\documentclass[10pt,a4paper]{article} % Packages \usepackage{fancyhdr} % For header and footer \usepackage{multicol} % Allows multicols in tables \usepackage{tabularx} % Intelligent column widths \usepackage{tabulary} % Used in header and footer \usepackage{hhline} % Border under tables \usepackage{graphicx} % For images \usepackage{xcolor} % For hex colours %\usepackage[utf8x]{inputenc} % For unicode character support \usepackage[T1]{fontenc} % Without this we get weird character replacements \usepackage{colortbl} % For coloured tables \usepackage{setspace} % For line height \usepackage{lastpage} % Needed for total page number \usepackage{seqsplit} % Splits long words. %\usepackage{opensans} % Can't make this work so far. Shame. Would be lovely. \usepackage[normalem]{ulem} % For underlining links % Most of the following are not required for the majority % of cheat sheets but are needed for some symbol support. \usepackage{amsmath} % Symbols \usepackage{MnSymbol} % Symbols \usepackage{wasysym} % Symbols %\usepackage[english,german,french,spanish,italian]{babel} % Languages % Document Info \author{shaylannxd} \pdfinfo{ /Title (chromatography-theory.pdf) /Creator (Cheatography) /Author (shaylannxd) /Subject (Chromatography Theory Cheat Sheet) } % Lengths and widths \addtolength{\textwidth}{6cm} \addtolength{\textheight}{-1cm} \addtolength{\hoffset}{-3cm} \addtolength{\voffset}{-2cm} \setlength{\tabcolsep}{0.2cm} % Space between columns \setlength{\headsep}{-12pt} % Reduce space between header and content \setlength{\headheight}{85pt} % If less, LaTeX automatically increases it \renewcommand{\footrulewidth}{0pt} % Remove footer line \renewcommand{\headrulewidth}{0pt} % Remove header line \renewcommand{\seqinsert}{\ifmmode\allowbreak\else\-\fi} % Hyphens in seqsplit % This two commands together give roughly % the right line height in the tables \renewcommand{\arraystretch}{1.3} \onehalfspacing % Commands \newcommand{\SetRowColor}[1]{\noalign{\gdef\RowColorName{#1}}\rowcolor{\RowColorName}} % Shortcut for row colour \newcommand{\mymulticolumn}[3]{\multicolumn{#1}{>{\columncolor{\RowColorName}}#2}{#3}} % For coloured multi-cols \newcolumntype{x}[1]{>{\raggedright}p{#1}} % New column types for ragged-right paragraph columns \newcommand{\tn}{\tabularnewline} % Required as custom column type in use % Font and Colours \definecolor{HeadBackground}{HTML}{333333} \definecolor{FootBackground}{HTML}{666666} \definecolor{TextColor}{HTML}{333333} \definecolor{DarkBackground}{HTML}{E35970} \definecolor{LightBackground}{HTML}{FDF4F6} \renewcommand{\familydefault}{\sfdefault} \color{TextColor} % Header and Footer \pagestyle{fancy} \fancyhead{} % Set header to blank \fancyfoot{} % Set footer to blank \fancyhead[L]{ \noindent \begin{multicols}{3} \begin{tabulary}{5.8cm}{C} \SetRowColor{DarkBackground} \vspace{-7pt} {\parbox{\dimexpr\textwidth-2\fboxsep\relax}{\noindent \hspace*{-6pt}\includegraphics[width=5.8cm]{/web/www.cheatography.com/public/images/cheatography_logo.pdf}} } \end{tabulary} \columnbreak \begin{tabulary}{11cm}{L} \vspace{-2pt}\large{\bf{\textcolor{DarkBackground}{\textrm{Chromatography Theory Cheat Sheet}}}} \\ \normalsize{by \textcolor{DarkBackground}{shaylannxd} via \textcolor{DarkBackground}{\uline{cheatography.com/149855/cs/32519/}}} \end{tabulary} \end{multicols}} \fancyfoot[L]{ \footnotesize \noindent \begin{multicols}{3} \begin{tabulary}{5.8cm}{LL} \SetRowColor{FootBackground} \mymulticolumn{2}{p{5.377cm}}{\bf\textcolor{white}{Cheatographer}} \\ \vspace{-2pt}shaylannxd \\ \uline{cheatography.com/shaylannxd} \\ \end{tabulary} \vfill \columnbreak \begin{tabulary}{5.8cm}{L} \SetRowColor{FootBackground} \mymulticolumn{1}{p{5.377cm}}{\bf\textcolor{white}{Cheat Sheet}} \\ \vspace{-2pt}Published 14th June, 2022.\\ Updated 19th June, 2022.\\ Page {\thepage} of \pageref{LastPage}. \end{tabulary} \vfill \columnbreak \begin{tabulary}{5.8cm}{L} \SetRowColor{FootBackground} \mymulticolumn{1}{p{5.377cm}}{\bf\textcolor{white}{Sponsor}} \\ \SetRowColor{white} \vspace{-5pt} %\includegraphics[width=48px,height=48px]{dave.jpeg} Measure your website readability!\\ www.readability-score.com \end{tabulary} \end{multicols}} \begin{document} \raggedright \raggedcolumns % Set font size to small. Switch to any value % from this page to resize cheat sheet text: % www.emerson.emory.edu/services/latex/latex_169.html \footnotesize % Small font. \begin{multicols*}{2} \begin{tabularx}{8.4cm}{x{3.52 cm} x{4.48 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{8.4cm}}{\bf\textcolor{white}{{\bf{Separation Theory}}}} \tn % Row 0 \SetRowColor{LightBackground} {\bf{Analyze Complex mixtures}} & \{\{nobreak\}\} If analyte produce overlapping signals \tn % Row Count 3 (+ 3) % Row 1 \SetRowColor{white} {\bf{Process of unmixing a sample}} & Input energy \{\{nl\}\}Analyte are diluted \tn % Row Count 5 (+ 2) \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{8.4cm}{x{3.04 cm} x{4.96 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{8.4cm}}{\bf\textcolor{white}{Requirements}} \tn % Row 0 \SetRowColor{LightBackground} {\bf{Stationary Phase (SP)}} & Fixed in column \{\{nl\}\} Interacts with analyte \tn % Row Count 2 (+ 2) % Row 1 \SetRowColor{white} {\bf{Mobile Phase (MP)}} & Moves through/over SP \{\{nl\}\} Carries analyte \tn % Row Count 4 (+ 2) % Row 2 \SetRowColor{LightBackground} {\bf{Interactions}} & No interaction with SP \{\{nl\}\} \{\{fa-caret-right\}\} Travel same speed as MP \{\{nl\}\} \{\{fa-caret-right\}\} No retention = No separation \tn % Row Count 10 (+ 6) % Row 3 \SetRowColor{white} & Interaction with SP \{\{nl\}\}\{\{fa-caret-right\}\} Analyte are retained \{\{fa-arrow-right\}\} Dispersion \{\{nl\}\} \{\{fa-caret-right\}\} Part time in SP (v=0) and MP (same speed) \tn % Row Count 17 (+ 7) % Row 4 \SetRowColor{LightBackground} & All analyte spends same amount of time in MP but diff. time in SP \tn % Row Count 20 (+ 3) \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{8.4cm}{x{2.08 cm} x{5.92 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{8.4cm}}{\bf\textcolor{white}{Fundamental Processes}} \tn % Row 0 \SetRowColor{LightBackground} {\bf{Retention}} & Peaks located in chromatogram \tn % Row Count 2 (+ 2) % Row 1 \SetRowColor{white} & Analyte interaction with column \{\{nl\}\} \{\{fa-caret-right\}\} stationary phase: strongint. = slow rate \tn % Row Count 6 (+ 4) % Row 2 \SetRowColor{LightBackground} & Control by thermodynamic property \{\{nl\}\} \{\{fa-caret-right\}\} alter property = alter retention \{\{nl\}\} Example: \{\{nl\}\}\{\{fa-caret-right\}\}Temperature (GC) \{\{nl\}\} \{\{fa-caret-right\}\} MP (LC) \{\{nl\}\} \{\{fa-caret-right\}\} SP \{\{nl\}\} \{\{fa-caret-right\}\} Analyte \tn % Row Count 15 (+ 9) % Row 3 \SetRowColor{white} {\bf{Dispersion}} & Band Broadening \{\{nl\}\} \{\{fa-caret-right\}\} peak width \{\{nl\}\} \{\{fa-caret-right\}\} how dilute \{\{nl\}\} Ex: \{\{fa-arrow-up\}\} Dispersion = \{\{fa-arrow-up\}\} Intensity = \{\{fa-arrow-up\}\} {[}Analye{]} \tn % Row Count 22 (+ 7) % Row 4 \SetRowColor{LightBackground} & Depends on structure of column \{\{nl\}\} \{\{fa-caret-right\}\} \{\{fa-arrow-up\}\} Analyte mix = \{\{fa-arrow-up\}\} Dispersion \tn % Row Count 26 (+ 4) % Row 5 \SetRowColor{white} & Depends on diffusion of analyte \{\{nl\}\} \{\{fa-caret-right\}\} \{\{fa-arrow-up\}\} Diffusion Coefficient = \{\{fa-arrow-up\}\} Dispersion \tn % Row Count 31 (+ 5) \end{tabularx} \par\addvspace{1.3em} \vfill \columnbreak \begin{tabularx}{8.4cm}{x{2.08 cm} x{5.92 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{8.4cm}}{\bf\textcolor{white}{Fundamental Processes (cont)}} \tn % Row 6 \SetRowColor{LightBackground} & Depends on total time in column \{\{nl\}\} \{\{fa-caret-right\}\} \{\{fa-arrow-up\}\} Time \{\{fa-arrow-up\}\} Diffusion = \{\{fa-arrow-up\}\} Dispersion \tn % Row Count 5 (+ 5) \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{8.4cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{8.4cm}}{\bf\textcolor{white}{Separation Process}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{8.4cm}}{Occurs in tube/plate (TLC)} \tn % Row Count 1 (+ 1) % Row 1 \SetRowColor{white} \mymulticolumn{1}{x{8.4cm}}{Drive MP through column \{\{nl\}\}\{\{fa-caret-right\}\} consistent velocity \{\{nl\}\}\{\{fa-caret-right\}\} Use a pump (LC) \{\{fa-arrow-right\}\} HPLC \{\{nl\}\}\{\{fa-caret-right\}\} Use capillary action (TLC) \{\{fa-arrow-right\}\} Dip plate in MP \{\{nl\}\}\{\{fa-caret-right\}\} Use gas pressure (GC) \{\{fa-arrow-right\}\} Store MP in HP-cylinder + attach to gas regulator} \tn % Row Count 8 (+ 7) % Row 2 \SetRowColor{LightBackground} \mymulticolumn{1}{x{8.4cm}}{Introduce sample at top of column} \tn % Row Count 9 (+ 1) % Row 3 \SetRowColor{white} \mymulticolumn{1}{x{8.4cm}}{Allow MP to drive sample through/over SP} \tn % Row Count 10 (+ 1) % Row 4 \SetRowColor{LightBackground} \mymulticolumn{1}{x{8.4cm}}{Detector at end (emerges vs. time)} \tn % Row Count 11 (+ 1) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{8.4cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{8.4cm}}{\bf\textcolor{white}{Process}} \tn \SetRowColor{LightBackground} \mymulticolumn{1}{p{8.4cm}}{\vspace{1px}\centerline{\includegraphics[width=5.1cm]{/web/www.cheatography.com/public/uploads/shaylannxd_1655183577_Capture.JPG}}} \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{8.4cm}{x{3.12 cm} x{4.88 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{8.4cm}}{\bf\textcolor{white}{Retention}} \tn % Row 0 \SetRowColor{LightBackground} {\bf{Measure Retention (K')}} & Variables \{\{nl\}\} \{\{fa-caret-right\}\} L=Length of column \{\{nl\}\} \{\{fa-caret-right\}\} U= MP velocity \{\{nl\}\} \{\{fa-caret-right\}\} V = Analyte velocity \{\{nl\}\} \{\{fa-caret-right\}\} t`m` = retention time of MP \{\{nl\}\} \{\{fa-caret-right\}\} t`r`=retention time of retained species \{\{nl\}\} \{\{fa-caret-right\}\} K=distribution constant\{\{nl\}\} \{\{fa-caret-right\}\} C`s`= {[}Analyte{]} in SP \{\{nl\}\} \{\{fa-caret-right\}\} C`m`= {[}Analyte{]} in MP \tn % Row Count 17 (+ 17) % Row 1 \SetRowColor{white} & t`r` \{\{fa-arrow-right\}\} use to identify analyte \tn % Row Count 19 (+ 2) % Row 2 \SetRowColor{LightBackground} & Simple matrix \{\{fa-arrow-right\}\}1\textless{} K' \textless{}10 \tn % Row Count 21 (+ 2) % Row 3 \SetRowColor{white} & Complex matrix \{\{fa-arrow-right\}\} 0.5\textless{} K' \textless{}20 \tn % Row Count 23 (+ 2) % Row 4 \SetRowColor{LightBackground} & K' \{\{nl\}\} \{\{fa-caret-right\}\} Determined by chromatogram\{\{nl\}\} \{\{fa-caret-right\}\} Controlled by equillibrium \{\{nl\}\} \{\{fa-caret-right\}\} Judge separation by the last peak retention value \tn % Row Count 31 (+ 8) \end{tabularx} \par\addvspace{1.3em} \vfill \columnbreak \begin{tabularx}{8.4cm}{x{3.12 cm} x{4.88 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{8.4cm}}{\bf\textcolor{white}{Retention (cont)}} \tn % Row 5 \SetRowColor{LightBackground} {\bf{Control Retention}} & Connect to K \tn % Row Count 2 (+ 2) % Row 6 \SetRowColor{white} & Control by thermodynamic property \{\{nl\}\}\{\{fa-caret-right\}\} Adjust temperature\{\{nl\}\}\{\{fa-caret-right\}\}Adjust type of MP \{\{nl\}\}\{\{fa-caret-right\}\}Adjust "strength" of MP/SP\{\{nl\}\}\{\{fa-caret-right\}\}Add additives to MP \{\{fa-arrow-right\}\} interact with analyte, SP, MP \{\{nl\}\}\{\{fa-caret-right\}\} Velocity of MP does not alter retention \tn % Row Count 16 (+ 14) \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{8.4cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{8.4cm}}{\bf\textcolor{white}{Retention Equations}} \tn \SetRowColor{LightBackground} \mymulticolumn{1}{p{8.4cm}}{\vspace{1px}\centerline{\includegraphics[width=5.1cm]{/web/www.cheatography.com/public/uploads/shaylannxd_1655185629_Capture5.JPG}}} \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{8.4cm}{x{3.44 cm} x{4.56 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{8.4cm}}{\bf\textcolor{white}{Efficiency}} \tn % Row 0 \SetRowColor{LightBackground} {\bf{Quantify Efficiency}} & Treat chromatographic peaks like "Gaussian" peaks \tn % Row Count 3 (+ 3) % Row 1 \SetRowColor{white} & Mean = Retention time \tn % Row Count 4 (+ 1) % Row 2 \SetRowColor{LightBackground} & Quantify width peak \{\{nl\}\}\{\{fa-caret-right\}\} standard deviation \{\{nl\}\}\{\{fa-caret-right\}\} peak width \tn % Row Count 9 (+ 5) % Row 3 \SetRowColor{white} & Smaller width = better efficiency \tn % Row Count 11 (+ 2) % Row 4 \SetRowColor{LightBackground} & Narrow peaks = Good efficiency \{\{nl\}\}\{\{fa-caret-right\}\} Clear separation \tn % Row Count 15 (+ 4) % Row 5 \SetRowColor{white} & Broad peaks = Poor efficiency \{\{nl\}\}\{\{fa-caret-right\}\} Overlapping \tn % Row Count 19 (+ 4) % Row 6 \SetRowColor{LightBackground} {\bf{Peak Shapes}} & Sample volume \textasciitilde{} 1\% column volume \tn % Row Count 21 (+ 2) % Row 7 \SetRowColor{white} & Various processes in column spread into larger volume \{\{nl\}\}\{\{fa-caret-right\}\} Often significant \textgreater{} starting volume \{\{nl\}\}\{\{fa-caret-right\}\} Ex: Inj.volume = 25uL and detection volume = 200uL \tn % Row Count 30 (+ 9) \end{tabularx} \par\addvspace{1.3em} \vfill \columnbreak \begin{tabularx}{8.4cm}{x{3.44 cm} x{4.56 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{8.4cm}}{\bf\textcolor{white}{Efficiency (cont)}} \tn % Row 8 \SetRowColor{LightBackground} & Desirable \{\{nl\}\}\{\{fa-caret-right\}\} Narrow peaks and small volume \tn % Row Count 3 (+ 3) % Row 9 \SetRowColor{white} & "Gaussian Peaks" \{\{nl\}\}\{\{fa-caret-right\}\} Peak could emerge with neighbor peak \{\{nl\}\}\{\{fa-caret-right\}\} dilution can form broadening \tn % Row Count 10 (+ 7) % Row 10 \SetRowColor{LightBackground} {\bf{Measure Efficiency}} & Variables \{\{nl\}\}\{\{fa-caret-right\}\} N = \# of theoretical plate \{\{nl\}\}\{\{fa-caret-right\}\} H = Height of theoretical plate (HETP) \{\{nl\}\}\{\{fa-caret-right\}\} L= Lenght of column \{\{nl\}\}\{\{fa-caret-right\}\} W = peak width at baseline \{\{nl\}\}\{\{fa-caret-right\}\} σ = Standard deviation (unit of lenght) \tn % Row Count 24 (+ 14) % Row 11 \SetRowColor{white} & Desirable \{\{nl\}\}\{\{fa-caret-right\}\} \{\{fa-arrow-up\}\} N = \{\{fa-arrow-down\}\} H = \{\{fa-arrow-down\}\} σ \tn % Row Count 29 (+ 5) % Row 12 \SetRowColor{LightBackground} & W range = -2τ tp + 2τ \tn % Row Count 31 (+ 2) \end{tabularx} \par\addvspace{1.3em} \vfill \columnbreak \begin{tabularx}{8.4cm}{x{3.44 cm} x{4.56 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{8.4cm}}{\bf\textcolor{white}{Efficiency (cont)}} \tn % Row 13 \SetRowColor{LightBackground} & N should be consistent \{\{nl\}\}\{\{fa-caret-right\}\} t`r` and σ scale with each other \tn % Row Count 4 (+ 4) % Row 14 \SetRowColor{white} {\bf{If Baseline not Accessible}} & Baseline peak width cannot be measured\{\{nl\}\}\{\{fa-caret-right\}\} nearby overlapping peaks \tn % Row Count 8 (+ 4) % Row 15 \SetRowColor{LightBackground} & Use upper portion of peak that is undistorted \{\{nl\}\}\{\{fa-caret-right\}\} Use full-width at half maximum (FWHM) \{\{nl\}\}\{\{fa-caret-right\}\} establish SD \tn % Row Count 15 (+ 7) % Row 16 \SetRowColor{white} & W`1/2`≠ 1/2 W \tn % Row Count 16 (+ 1) \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{8.4cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{8.4cm}}{\bf\textcolor{white}{"Gaussian Peak" At W}} \tn \SetRowColor{LightBackground} \mymulticolumn{1}{p{8.4cm}}{\vspace{1px}\centerline{\includegraphics[width=5.1cm]{/web/www.cheatography.com/public/uploads/shaylannxd_1655188136_Capture8.JPG}}} \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{8.4cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{8.4cm}}{\bf\textcolor{white}{Full-Width at Half Maximum}} \tn \SetRowColor{LightBackground} \mymulticolumn{1}{p{8.4cm}}{\vspace{1px}\centerline{\includegraphics[width=5.1cm]{/web/www.cheatography.com/public/uploads/shaylannxd_1655188022_Capture7.JPG}}} \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{8.4cm}{x{3.04 cm} x{4.96 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{8.4cm}}{\bf\textcolor{white}{Band Broadening}} \tn % Row 0 \SetRowColor{LightBackground} {\bf{Occurrences}} & Low efficiency \{\{nl\}\}\{\{fa-caret-right\}\} Not fully separated peaks\{\{nl\}\}\{\{fa-caret-right\}\} Interferences \tn % Row Count 5 (+ 5) % Row 1 \SetRowColor{white} & Dispersion is independent of retention \tn % Row Count 7 (+ 2) % Row 2 \SetRowColor{LightBackground} {\bf{Van Deemeter Overview}} & A-Term \{\{nl\}\}\{\{fa-caret-right\}\} Associate with multiple flow paths through column\{\{nl\}\}\{\{fa-caret-right\}\}Each unique distance\{\{nl\}\}\{\{fa-caret-right\}\}Result in variety of times to transit column \tn % Row Count 16 (+ 9) % Row 3 \SetRowColor{white} & B-Term \{\{nl\}\}\{\{fa-caret-right\}\} Associate with longitudinal diffusion of analyte\{\{nl\}\}\{\{fa-caret-right\}\}Some analyte will arrive sooner/later\{\{nl\}\}\{\{fa-caret-right\}\}Depends on magnitude + direction of net diffusion during t`r` \tn % Row Count 26 (+ 10) % Row 4 \SetRowColor{LightBackground} & C-Term \{\{nl\}\}\{\{fa-caret-right\}\} Split into 2 sub-terms\{\{nl\}\}\{\{fa-caret-right\}\}Relate to reality that chromatogram is carried out in non-equilibrium state\{\{nl\}\}\{\{fa-caret-right\}\}Analyte in Mp will be out of equilibrium with those in SP (vice versa) \{\{nl\}\}\{\{fa-caret-right\}\}Some analyte will arrive at detector earlier or later than true equilibrium would predicted \tn % Row Count 42 (+ 16) \end{tabularx} \par\addvspace{1.3em} \vfill \columnbreak \begin{tabularx}{8.4cm}{x{3.04 cm} x{4.96 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{8.4cm}}{\bf\textcolor{white}{Band Broadening (cont)}} \tn % Row 5 \SetRowColor{LightBackground} {\bf{Van Deemeter Graph}} & Produce the overall curve with distinct minimum\{\{nl\}\}\{\{fa-caret-right\}\} Corresponding to N`max` and fixed L \tn % Row Count 5 (+ 5) % Row 6 \SetRowColor{white} & Overall Plate Height:\{\{nl\}\}\{\{fa-caret-right\}\}Equation: H = A + B/U + (C`s`+C`m`)U\{\{nl\}\}\{\{fa-caret-right\}\} Sum of 4 components (red line) \tn % Row Count 11 (+ 6) % Row 7 \SetRowColor{LightBackground} & A-Term: \{\{nl\}\}\{\{fa-caret-right\}\} Constant (purple line) \tn % Row Count 14 (+ 3) % Row 8 \SetRowColor{white} & B/U-Term: \{\{nl\}\}\{\{fa-caret-right\}\} Varies as 1/U (pink line) \tn % Row Count 17 (+ 3) % Row 9 \SetRowColor{LightBackground} & C`s`U-Term: \{\{nl\}\}\{\{fa-caret-right\}\} Linear increasing (blue line) \tn % Row Count 20 (+ 3) % Row 10 \SetRowColor{white} & C`m`U-Term: \{\{nl\}\}\{\{fa-caret-right\}\} Linear increasing (yellow line) \tn % Row Count 23 (+ 3) \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{8.4cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{8.4cm}}{\bf\textcolor{white}{Van Deemter Graph (copy)}} \tn \SetRowColor{LightBackground} \mymulticolumn{1}{p{8.4cm}}{\vspace{1px}\centerline{\includegraphics[width=5.1cm]{/web/www.cheatography.com/public/uploads/shaylannxd_1655237302_Screen Shot 2022-06-14 at 4.07.15 PM.png}}} \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{8.4cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{8.4cm}}{\bf\textcolor{white}{{\bf{A-Term: Multipath Band Broadening}}}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{8.4cm}}{All molecules start at top of column} \tn % Row Count 1 (+ 1) % Row 1 \SetRowColor{white} \mymulticolumn{1}{x{8.4cm}}{As they move down \{\{nl\}\}\{\{fa-caret-right\}\} Follow different paths through particles\{\{nl\}\}\{\{fa-caret-right\}\}Irrespective of interaction with SP} \tn % Row Count 4 (+ 3) % Row 2 \SetRowColor{LightBackground} \mymulticolumn{1}{x{8.4cm}}{Range of paths depends on size of particles\{\{nl\}\}\{\{fa-caret-right\}\} \{\{fa-arrow-up\}\} Size = \{\{fa-arrow-down\}\} \# of paths = \{\{fa-arrow-up\}\} Path length} \tn % Row Count 7 (+ 3) % Row 3 \SetRowColor{white} \mymulticolumn{1}{x{8.4cm}}{Depends on how "packed: the bed is\{\{nl\}\}\{\{fa-caret-right\}\} Crack, voids, etc} \tn % Row Count 9 (+ 2) % Row 4 \SetRowColor{LightBackground} \mymulticolumn{1}{x{8.4cm}}{Equation: \{\{nl\}\}\{\{fa-caret-right\}\} H`A-term`= 2λd`p`\{\{nl\}\}\{\{fa-caret-right\}\} λ = quality/tortuosity factor \{\{nl\}\}\{\{fa-caret-right\}\} \textasciitilde{}0.5-0.6 (packed column) \{\{nl\}\}\{\{fa-caret-right\}\} FSOT less} \tn % Row Count 13 (+ 4) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{8.4cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{8.4cm}}{\bf\textcolor{white}{A-Term Diagram}} \tn \SetRowColor{LightBackground} \mymulticolumn{1}{p{8.4cm}}{\vspace{1px}\centerline{\includegraphics[width=5.1cm]{/web/www.cheatography.com/public/uploads/shaylannxd_1655236320_Screen Shot 2022-06-14 at 3.51.25 PM.png}}} \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{8.4cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{8.4cm}}{\bf\textcolor{white}{{\bf{B/U-Term: Longitudinal Diffusion}}}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{8.4cm}}{All molecules start at top of column} \tn % Row Count 1 (+ 1) % Row 1 \SetRowColor{white} \mymulticolumn{1}{x{8.4cm}}{As they move down \{\{nl\}\}\{\{fa-caret-right\}\} Molecules moves away from each other \{\{nl\}\}\{\{fa-caret-right\}\} Process continues as long as they remain in column} \tn % Row Count 5 (+ 4) % Row 2 \SetRowColor{LightBackground} \mymulticolumn{1}{x{8.4cm}}{Dispersion in all 3 directions\{\{nl\}\}\{\{fa-caret-right\}\}Only longitudinal dispersion impacts peak width (\{\{fa-arrow-up\}\} and \{\{fa-arrow-down\}\})} \tn % Row Count 8 (+ 3) % Row 3 \SetRowColor{white} \mymulticolumn{1}{x{8.4cm}}{Packing column \{\{nl\}\}\{\{fa-caret-right\}\} Reduce longitudinal diffusion = \{\{fa-arrow-down\}\} Plate height (Beneficial)\{\{nl\}\}\{\{fa-caret-right\}\}Blocks molecules travel} \tn % Row Count 12 (+ 4) % Row 4 \SetRowColor{LightBackground} \mymulticolumn{1}{x{8.4cm}}{Equation: \{\{nl\}\}\{\{fa-caret-right\}\} H`B/U-Term` = (2𝛾D`m`)/U \{\{nl\}\}\{\{fa-caret-right\}\} D`m`= Diffusion coefficient in MP \{\{nl\}\}\{\{fa-caret-right\}\}𝛾= Obstruction factor \{\{nl\}\}\{\{fa-caret-right\}\} \textasciitilde{} 0.6 (packed column) \{\{nl\}\}\{\{fa-caret-right\}\} \textasciitilde{} 1.0 ( open tubular column) \{\{nl\}\}\{\{fa-caret-right\}\} U= MP velocity} \tn % Row Count 19 (+ 7) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{8.4cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{8.4cm}}{\bf\textcolor{white}{B/U-Term Diagram}} \tn \SetRowColor{LightBackground} \mymulticolumn{1}{p{8.4cm}}{\vspace{1px}\centerline{\includegraphics[width=5.1cm]{/web/www.cheatography.com/public/uploads/shaylannxd_1655236373_Screen Shot 2022-06-14 at 3.52.25 PM.png}}} \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{8.4cm}{x{4 cm} x{4 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{8.4cm}}{\bf\textcolor{white}{C-Term: Resistance to Mass Transfer}} \tn % Row 0 \SetRowColor{LightBackground} {\bf{C-Term}} & Ideal chromatography \{\{nl\}\}\{\{fa-caret-right\}\} Assumption that analyte can "instantly" equilibrate between 2 phases \tn % Row Count 6 (+ 6) % Row 1 \SetRowColor{white} & MP is always moving the analyte down \tn % Row Count 8 (+ 2) % Row 2 \SetRowColor{LightBackground} & Analyte in leading edge of peak are always moving over SP that is deficient in analyte \{\{nl\}\}\{\{fa-caret-right\}\} Reverse for trailing edge \{\{nl\}\}\{\{fa-caret-right\}\} Out of equilibrium \tn % Row Count 18 (+ 10) % Row 3 \SetRowColor{white} & Equilibrium established when there are analyte at: \{\{nl\}\}\{\{fa-caret-right\}\} SP\{\{nl\}\}\{\{fa-caret-right\}\} MP\{\{nl\}\}\{\{fa-caret-right\}\} Interface \tn % Row Count 26 (+ 8) % Row 4 \SetRowColor{LightBackground} & Takes time for analyre to diffuse to/away from phases to match equilibrium constant \{\{nl\}\}\{\{fa-caret-right\}\} In SP \{\{fa-arrow-right\}\} Analyte gets further behind than expected \{\{nl\}\}\{\{fa-caret-right\}\} In MP \{\{fa-arrow-right\}\} Analyte gets further ahead than expected \tn % Row Count 40 (+ 14) \end{tabularx} \par\addvspace{1.3em} \vfill \columnbreak \begin{tabularx}{8.4cm}{x{4 cm} x{4 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{8.4cm}}{\bf\textcolor{white}{C-Term: Resistance to Mass Transfer (cont)}} \tn % Row 5 \SetRowColor{LightBackground} & Rise to broadening \tn % Row Count 1 (+ 1) % Row 6 \SetRowColor{white} {\bf{C`m`U-Term: Resistance to Mass Transfer in MP}} & Space in-between particles depends on particles size/diameter\{\{nl\}\}\{\{fa-caret-right\}\} Distance required for diffusion to move analyte\{\{nl\}\}\{\{fa-caret-right\}\} Reach interface \tn % Row Count 10 (+ 9) % Row 7 \SetRowColor{LightBackground} & Delays in reaching equilibrium depends on distances \tn % Row Count 13 (+ 3) % Row 8 \SetRowColor{white} & Distance is proportional to size of particle \tn % Row Count 16 (+ 3) % Row 9 \SetRowColor{LightBackground} & Equation: \{\{nl\}\}\{\{fa-caret-right\}\} H`CmU` = (f`m`(K')d`p`\textasciicircum{}2\textasciicircum{}*U)/D`m`\{\{nl\}\}\{\{fa-caret-right\}\} f`m`(K') = Quasi constant \{\{fa-arrow-right\}\} Depends on retention\{\{nl\}\}\{\{fa-caret-right\}\} d`p`= Particle diameter (units) \{\{nl\}\}\{\{fa-caret-right\}\} D`m`= Diffusion coefficient of analyte in MP (cm\textasciicircum{}2\textasciicircum{}/s) \{\{fa-arrow-right\}\} 1 cm\textasciicircum{}2\textasciicircum{}= 10\textasciicircum{}4\textasciicircum{}mm \{\{nl\}\}\{\{fa-caret-right\}\} U= MP velocity \tn % Row Count 35 (+ 19) \end{tabularx} \par\addvspace{1.3em} \vfill \columnbreak \begin{tabularx}{8.4cm}{x{4 cm} x{4 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{8.4cm}}{\bf\textcolor{white}{C-Term: Resistance to Mass Transfer (cont)}} \tn % Row 10 \SetRowColor{LightBackground} {\bf{C`s`U-Term: Resistance to Mass Transfer in SP}} & Space in SP depends on SP thickness \{\{nl\}\}\{\{fa-caret-right\}\} Distance required for diffusion \tn % Row Count 5 (+ 5) % Row 11 \SetRowColor{white} & Analyte reach MP/SP interface \{\{nl\}\}\{\{fa-caret-right\}\} Equilibrium reach\{\{nl\}\}\{\{fa-caret-right\}\} Delays depends on distances \tn % Row Count 12 (+ 7) % Row 12 \SetRowColor{LightBackground} & Equation: \{\{nl\}\}\{\{fa-caret-right\}\} H`CsU`= (f`s`(K')d`f`\textasciicircum{}2\textasciicircum{}*U)/D`s` \{\{nl\}\}\{\{fa-caret-right\}\} d`f`= SP thickness \{\{nl\}\}\{\{fa-caret-right\}\} D`s`=Diffusion Coefficient of analyte in SP \tn % Row Count 21 (+ 9) % Row 13 \SetRowColor{white} & GC: \{\{nl\}\}\{\{fa-caret-right\}\} \textasciitilde{}0.1-0.5 µm film thickness\{\{nl\}\}\{\{fa-caret-right\}\} Controls retention \{\{nl\}\}\{\{fa-caret-right\}\}Impact resistance to mass transfer \tn % Row Count 29 (+ 8) % Row 14 \SetRowColor{LightBackground} & LC: \{\{nl\}\}\{\{fa-caret-right\}\} Never adjust to thickness \{\{fa-arrow-right\}\} Monolayer \{\{nl\}\}\{\{fa-caret-right\}\}Resistance\{\{fa-arrow-right\}\} Negligible \{\{nl\}\}\{\{fa-caret-right\}\} Important in MP \tn % Row Count 39 (+ 10) \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{8.4cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{8.4cm}}{\bf\textcolor{white}{C`m`U and C`s`U Term Diagram}} \tn \SetRowColor{LightBackground} \mymulticolumn{1}{p{8.4cm}}{\vspace{1px}\centerline{\includegraphics[width=5.1cm]{/web/www.cheatography.com/public/uploads/shaylannxd_1655236255_Screen Shot 2022-06-14 at 3.50.21 PM.png}}} \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{8.4cm}{x{3.52 cm} x{4.48 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{8.4cm}}{\bf\textcolor{white}{Resolution}} \tn % Row 0 \SetRowColor{LightBackground} {\bf{Define Resolution}} & 2 peaks of interest (critical pair) \{\{nl\}\}\{\{fa-caret-right\}\} Peaks closest together \tn % Row Count 4 (+ 4) % Row 1 \SetRowColor{white} & Resolved \{\{nl\}\}\{\{fa-caret-right\}\} Clear separation \{\{nl\}\}\{\{fa-caret-right\}\}No analyte mixing \{\{nl\}\}\{\{fa-caret-right\}\}Pure peaks \tn % Row Count 10 (+ 6) % Row 2 \SetRowColor{LightBackground} & W is not affected by plate height \tn % Row Count 12 (+ 2) % Row 3 \SetRowColor{white} {\bf{Successful Separation}} & Isolated peaks \tn % Row Count 14 (+ 2) % Row 4 \SetRowColor{LightBackground} & See baseline between peaks \tn % Row Count 16 (+ 2) % Row 5 \SetRowColor{white} & Dependent on resolution \tn % Row Count 18 (+ 2) % Row 6 \SetRowColor{LightBackground} & Can use ruler to see if baseline from beginning/end match to baseline between peaks \tn % Row Count 22 (+ 4) % Row 7 \SetRowColor{white} {\bf{Quantify Resolution (R/R`s`)}} & Use W \{\{nl\}\}\{\{fa-caret-right\}\} Captures +/- 2𝜎 regions of "Gaussian" peaks \{\{nl\}\}\{\{fa-caret-right\}\} Corresponds to \textasciitilde{} 95.5\% of analyte \tn % Row Count 29 (+ 7) % Row 8 \SetRowColor{LightBackground} & R improves: \{\{nl\}\}\{\{fa-caret-right\}\} Greater ∆t`r`\{\{nl\}\}\{\{fa-caret-right\}\} Smaller W`a` and/or W`b`\{\{nl\}\}\{\{fa-caret-right\}\} Narrow peaks = more baseline expose \tn % Row Count 37 (+ 8) \end{tabularx} \par\addvspace{1.3em} \vfill \columnbreak \begin{tabularx}{8.4cm}{x{3.52 cm} x{4.48 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{8.4cm}}{\bf\textcolor{white}{Resolution (cont)}} \tn % Row 9 \SetRowColor{LightBackground} & Full W of peak does not matter \{\{nl\}\}\{\{fa-caret-right\}\} Only back half (peak 1) and first half (peak 2) \tn % Row Count 5 (+ 5) % Row 10 \SetRowColor{white} & 2 neighbouring peaks are resolved when \{\{fa-arrow-right\}\} R ≥1.5 \tn % Row Count 8 (+ 3) \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{8.4cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{8.4cm}}{\bf\textcolor{white}{Resolution Diagram}} \tn \SetRowColor{LightBackground} \mymulticolumn{1}{p{8.4cm}}{\vspace{1px}\centerline{\includegraphics[width=5.1cm]{/web/www.cheatography.com/public/uploads/shaylannxd_1655237089_Screen Shot 2022-06-14 at 4.02.59 PM.png}}} \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \SetRowColor{LightBackground} \mymulticolumn{1}{x{8.4cm}}{Graph A-C has poor resolution \{\{fa-arrow-right\}\} Overlapping peaks \newline Graph D has the minimum resolution requirement \newline Graph E-F has a good resolution \{\{fa-arrow-right\}\} See baseline between peaks} \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{8.4cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{8.4cm}}{\bf\textcolor{white}{Resolution Equation}} \tn \SetRowColor{LightBackground} \mymulticolumn{1}{p{8.4cm}}{\vspace{1px}\centerline{\includegraphics[width=5.1cm]{/web/www.cheatography.com/public/uploads/shaylannxd_1655237557_Screen Shot 2022-06-14 at 4.11.48 PM.png}}} \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{8.4cm}{x{4 cm} x{4 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{8.4cm}}{\bf\textcolor{white}{Controlling Resolving Power}} \tn % Row 0 \SetRowColor{LightBackground} {\bf{Control Resolution}} & Proximity of 2 peaks is important to R \{\{nl\}\}\{\{fa-caret-right\}\} Controlled by separation conditions \tn % Row Count 5 (+ 5) % Row 1 \SetRowColor{white} & Quantify proximity: \{\{nl\}\}\{\{fa-caret-right\}\} Selectivity factor \{\{fa-arrow-right\}\} Define as a ratio of distribution constant of 2 peaks \tn % Row Count 12 (+ 7) % Row 2 \SetRowColor{LightBackground} & Peaks shares column \{\{fa-arrow-right\}\} Same SP and MP \tn % Row Count 15 (+ 3) % Row 3 \SetRowColor{white} & 𝛼 = ratio of retention factors \{\{nl\}\}\{\{fa-caret-right\}\} Access from chromatogram\{\{nl\}\}\{\{fa-caret-right\}\} Change in selectivity = change in resolution \tn % Row Count 23 (+ 8) % Row 4 \SetRowColor{LightBackground} {\bf{Effects of Retention and Selectivity on R'}} & Key variable that controls potential resolutions \{\{nl\}\}\{\{fa-caret-right\}\} Resolving power (R') \tn % Row Count 28 (+ 5) % Row 5 \SetRowColor{white} & R' dependent: \{\{nl\}\}\{\{fa-caret-right\}\} Very sensitive to selectivity (𝛼)\{\{nl\}\}\{\{fa-caret-right\}\} Somewhat sensitive to retention (K') \{\{nl\}\}\{\{fa-caret-right\}\} Moderately sensitive to efficiency of column (N)\{\{nl\}\}\{\{fa-caret-right\}\} Choice of column \{\{nl\}\}\{\{fa-caret-right\}\} Choice of MP (LC only) \tn % Row Count 43 (+ 15) \end{tabularx} \par\addvspace{1.3em} \vfill \columnbreak \begin{tabularx}{8.4cm}{x{4 cm} x{4 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{8.4cm}}{\bf\textcolor{white}{Controlling Resolving Power (cont)}} \tn % Row 6 \SetRowColor{LightBackground} & 𝛼 control by: \{\{nl\}\}\{\{fa-caret-right\}\} Differential interactions between: Analyte\{\{fa-arrows-h\}\} MP\{\{fa-arrows-h\}\}SP \tn % Row Count 6 (+ 6) % Row 7 \SetRowColor{white} & N control by:\{\{nl\}\}\{\{fa-caret-right\}\} Column (L) \{\{nl\}\}\{\{fa-caret-right\}\} VD equations \{\{nl\}\}\{\{fa-caret-right\}\}Type of column\{\{nl\}\}\{\{fa-caret-right\}\} SP thickness \{\{nl\}\}\{\{fa-caret-right\}\} Operating conditions \tn % Row Count 17 (+ 11) % Row 8 \SetRowColor{LightBackground} & K' control by: \{\{nl\}\}\{\{fa-caret-right\}\} SP type\{\{nl\}\}\{\{fa-caret-right\}\}Phase Ratio (SP thickness)\{\{nl\}\}\{\{fa-caret-right\}\} MP type (LC only) \tn % Row Count 24 (+ 7) % Row 9 \SetRowColor{white} {\bf{Effects of R' on Retention Time}} & \{\{fa-arrow-up\}\} R'= \{\{fa-arrow-up\}\} Total run time \{\{nl\}\}\{\{fa-caret-right\}\} Interplay \tn % Row Count 29 (+ 5) % Row 10 \SetRowColor{LightBackground} & Interplay between R' and t`r` as a function of K' \tn % Row Count 32 (+ 3) \end{tabularx} \par\addvspace{1.3em} \vfill \columnbreak \begin{tabularx}{8.4cm}{x{4 cm} x{4 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{8.4cm}}{\bf\textcolor{white}{Controlling Resolving Power (cont)}} \tn % Row 11 \SetRowColor{LightBackground} & R': \{\{nl\}\}\{\{fa-caret-right\}\} N and 𝛼 \textasciitilde{} constant when K' is alter \{\{nl\}\}\{\{fa-caret-right\}\} Replace terms with Q \tn % Row Count 6 (+ 6) % Row 12 \SetRowColor{white} & t`rb`: \{\{nl\}\}\{\{fa-caret-right\}\} N,H,𝛼, U \textasciitilde{} constant\{\{nl\}\}\{\{fa-caret-right\}\} Assume R' is not changing dramatically\{\{nl\}\}\{\{fa-caret-right\}\} Replace constant terms with Q \tn % Row Count 15 (+ 9) \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{8.4cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{8.4cm}}{\bf\textcolor{white}{Effects on Retention and Selectivity R'}} \tn \SetRowColor{LightBackground} \mymulticolumn{1}{p{8.4cm}}{\vspace{1px}\centerline{\includegraphics[width=5.1cm]{/web/www.cheatography.com/public/uploads/shaylannxd_1655238475_Screen Shot 2022-06-14 at 4.25.41 PM.png}}} \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{8.4cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{8.4cm}}{\bf\textcolor{white}{Effects of R' on t`r`}} \tn \SetRowColor{LightBackground} \mymulticolumn{1}{p{8.4cm}}{\vspace{1px}\centerline{\includegraphics[width=5.1cm]{/web/www.cheatography.com/public/uploads/shaylannxd_1655238827_Screen Shot 2022-06-14 at 4.31.52 PM.png}}} \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \SetRowColor{LightBackground} \mymulticolumn{1}{x{8.4cm}}{Notice that R' increases significantly at low K' but plateaus at large K' \newline \{\{fa-caret-right\}\}Don't use separations with small K' (low R') \newline Notice that tr increases linearly with increasing k' BUT R' plateaus at large k' \newline \{\{fa-caret-right\}\} Therefore there is no real benefit to sep'ns with large k's (b/c R' ≈ constant)} \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} % That's all folks \end{multicols*} \end{document}