Chromatography Theory Cheat Sheet by shaylannxd via cheatography.com/149855/cs/32519/

Separation The	eory	Fundamental Processes (cont)	
Analyze Comp Process of unn sample		als Dispersion Band Broadening	
Requirements		Depends on structure of column ▲ Analyte mix = ▲ Dispersion 	
Stationary Phase (SP)	Fixed in column Interacts with analyte	Depends on diffusion of analyte ↑ Diffusion Coefficient = ↑ Dispersion	
Mobile Phase (MP)	Moves through/over SP Carries analyte	Depends on total time in column ↑ Time ↑ Diffusion = ↑ Dispersion 	
Interactions	No interaction with SP Travel same speed as MP No retention = No separation 	Separation Process	
	 Interaction with SP Analyte are retained → Dispersion Part time in SP (v=0) and MP (same speed All analyte spends same amount of time in MP but diff. time in SP 	Occurs in tube/plate (TLC) Drive MP through column	
Fundamental F	Processes	► Use gas pressure (GC) Store MP in HP-cylinder + attach to gas regulator	
Retention	Peaks located in chromatogram Analyte interaction with column • stationary phase: strongint. = slow rate	Introduce sample at top of column Allow MP to drive sample through/over SP Detector at end (emerges vs. time)	
	Control by thermodynamic property • alter property = alter retention Example: • Temperature (GC) • MP (LC) • SP • Analyte	Process Mobile Phase Flow (J) analyte 2 analyte 1 Mobile Phase front (unretained) Detector	

By shaylannxd

cheatography.com/shaylannxd/

Published 14th June, 2022. Last updated 19th June, 2022. Page 1 of 9. Sign

Sponsored by CrosswordCheats.com Learn to solve cryptic crosswords! http://crosswordcheats.com

Time

Chromatography Theory Cheat Sheet by shaylannxd via cheatography.com/149855/cs/32519/

Retention		Efficiency	
Measure Retention Variables (K') L=Length of column U = MP velocity V = Analyte velocity tm = retention time of MP tr=retention time of retained species K=distribution constant Cs = [Analyte] in SP Cm= [Analyte] in MP		Quantify Efficiency	 Treat chromatographic peaks like "Gaussian" peaks Mean = Retention time Quantify width peak standard deviation peak width Smaller width = better efficiency Narrow peaks = Good efficiency
	tr \rightarrow use to identify analyte Simple matrix \rightarrow 1< K' <10 Complex matrix \rightarrow 0.5< K' <20		 Clear separation Broad peaks = Poor efficiency Overlapping
	 K' Determined by chromatogram Controlled by equillibrium Judge separation by the last peak retention value 	Peak Shapes	 Sample volume ~ 1% column volume Various processes in column spread into larger volume Often significant > starting volume Ex: Inj.volume = 25uL and detection volume = 200uL
Contr Ac Ad Ad			Desirable Narrow peaks and small volume "Gaussian Peaks" Peak could emerge with neighbor peak dilution can form broadening
Retention Equations		Measure Efficiency	 Variables N = # of theoretical plate H = Height of theoretical plate (HETP) L = Lenght of column W = peak width at baseline σ = Standard deviation (unit of lenght)
	$\overline{U} = \frac{L}{t_m} \qquad \overline{v} = \overline{U} \frac{1}{(1+k')}$		Desirable

▶ ↑ N = ↓ H = ↓ σ

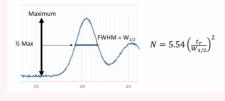
 $\bar{v} = \frac{L}{t_m} \qquad \bar{v} = \frac{U}{(1+k')}$ $\bar{v} = \frac{L}{t_r} \qquad \bar{v} = \frac{L}{t_r} = \frac{L}{t_m} \frac{1}{(1+k')}$ $K = \frac{C_s}{C_m} \qquad k' = \frac{t_r - t_m}{t_m} = K \frac{v_s}{v_m}$

C

By **shaylannxd**

Published 14th June, 2022. Last updated 19th June, 2022. Page 2 of 9. Sponsored by CrosswordCheats.com Learn to solve cryptic crosswords! http://crosswordcheats.com

Chromatography Theory Cheat Sheet by shaylannxd via cheatography.com/149855/cs/32519/


Efficiency (cont)	
	W range = -2t tp + 2t
	N should be consistenttr and σ scale with each other
If Baseline not Accessible	Baseline peak width cannot be measured nearby overlapping peaks
	Use upper portion of peak that is undist- orted Use full-width at half maximum (FWHM) establish SD
	W1/2≠ 1/2 W

"Gaussian Peak" At W

$$\tau = \frac{\sigma}{\overline{v}} = \frac{\sigma}{L/t_r} = \frac{W}{4} \qquad \sigma = \frac{LW}{4t_r} = \frac{W}{4}$$

$$N = \frac{L}{H} = 16 \left(\frac{t_r}{W}\right)^2 = \left(\frac{t_r}{\sigma}\right)^2 \qquad H = \frac{\sigma^2}{L}$$
Baseline
Yest
Yest
W = 4T

Full-Width at Half Maximum

By **shaylannxd**

Published 14th June, 2022. Last updated 19th June, 2022. Page 3 of 9. Sponsored by CrosswordCheats.com Learn to solve cryptic crosswords! http://crosswordcheats.com

Band Broaden	Band Broadening		
Occurrences	 Low efficiency Not fully separated peaks Interferences Dispersion is independent of retention 		
Van Deemeter Overview	 A-Term Associate with multiple flow paths through column Each unique distance Result in variety of times to transit column 		
	 B-Term Associate with longitudinal diffusion of analyte Some analyte will arrive sooner/later Depends on magnitude + direction of net diffusion during tr 		
	 C-Term Split into 2 sub-terms Relate to reality that chromatogram is carried out in non-equilibrium state Analyte in Mp will be out of equilibrium with those in SP (vice versa) Some analyte will arrive at detector earlier or later than true equilibrium would predicted 		
Van Deemeter Graph	 Produce the overall curve with distinct minimum Corresponding to Nmax and fixed L 		

Chromatography Theory Cheat Sheet by shaylannxd via cheatography.com/149855/cs/32519/

Band Broadening (cont)

Overall Plate Height:

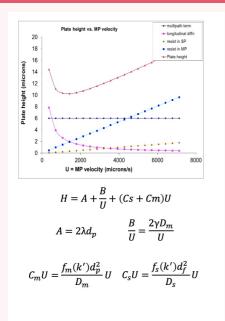
- Equation: $H = A + B/U + (C_S + C_m)U$
- Sum of 4 components (red line)

A-Term:

Constant (purple line)

B/U-Term:

Varies as 1/U (pink line)


CsU-Term:

Linear increasing (blue line)

CmU-Term:

Linear increasing (yellow line)

Van Deemter Graph (copy)

A-Term: Multipath Band Broadening

All molecules start at top of column

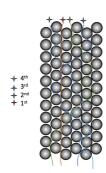
As they move down

- Follow different paths through particles
- Irrespective of interaction with SP

Range of paths depends on size of particles

• \clubsuit Size = \clubsuit # of paths = \clubsuit Path length

Depends on how "packed: the bed is


Crack, voids, etc

A-Term: Multipath Band Broadening (cont)

Equation:

- HA-term= 2λdp
- λ = quality/tortuosity factor
- ~0.5-0.6 (packed column)
- FSOT less

A-Term Diagram

B/U-Term: Longitudinal Diffusion

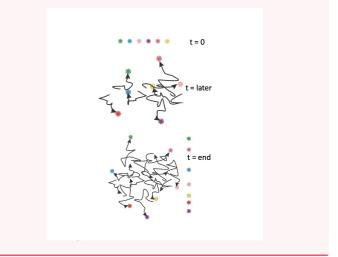
All molecules start at top of column

As they move down

- Molecules moves away from each other
- Process continues as long as they remain in column

Dispersion in all 3 directions

• Only longitudinal dispersion impacts peak width (\clubsuit and \clubsuit)


Packing column

- Reduce longitudinal diffusion = Plate height (Beneficial)
- Blocks molecules travel

Equation:

- $HB/U-Term = (2\gamma Dm)/U$
- Dm= Diffusion coefficient in MP
- γ= Obstruction factor
- ~ 0.6 (packed column)
- ~ 1.0 (open tubular column)
- U= MP velocity

B/U-Term Diagram

By shaylannxd

Published 14th June, 2022. Last updated 19th June, 2022. Page 4 of 9. Sponsored by CrosswordCheats.com Learn to solve cryptic crosswords! http://crosswordcheats.com

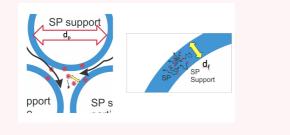
Chromatography Theory Cheat Sheet by shaylannxd via cheatography.com/149855/cs/32519/

C-Term: Resistance to Mass Transfer		C-Term: Resistance to Mass Transfer (cont)	
C-Term	Ideal chromatography Assumption that analyte can "instantly" 		Distance is proportional to size of particle
	equilibrate between 2 phases MP is always moving the analyte down		Equation: ▶ Hcm∪ = (fm(K')dp ² *U)/Dm
	 Analyte in leading edge of peak are always moving over SP that is deficient in analyte Reverse for trailing edge Out of equilibrium 		 fm(K') = Quasi constant > Depends on retention dp= Particle diameter (units) Dm= Diffusion coefficient of analyte in MP (cm²/s) > 1 cm²= 10⁴mm U= MP velocity
	Equilibrium established when there are analyte at:		
	► SP ► MP	CsU-Term: Resistance to Mass Transfer in SP	Space in SP depends on SP thicknessDistance required for diffusion
	 Interface Takes time for analyre to diffuse to/away from phases to match equilibrium constant In SP Analyte gets further behind than expected In MP Analyte gets further ahead than expected 		Analyte reach MP/SP interfaceEquilibrium reachDelays depends on distances
			Equation: HCsU= (fs(K')df²*U)/Ds df= SP thickness Ds=Diffusion Coefficient of analyte
	Rise to broadening		in SP
CmU-Term: Resistance to Mass Transfer in MP	 Space in-between particles depends on particles size/diameter Distance required for diffusion to move analyte Reach interface 		GC: ▶ ~0.1-0.5 µm film thickness ▶ Controls retention ▶ Impact resistance to mass transfer
	Delays in reaching equilibrium depends on distances	-	
By shayla	annxd Published 14th Jun Last updated 19th .		Sponsored by CrosswordCheats.com Learn to solve cryptic crosswords!

Page 5 of 9.

cheatography.com/shaylannxd/

Learn to solve cryptic crosswords! http://crosswordcheats.com


Chromatography Theory Cheat Sheet by shaylannxd via cheatography.com/149855/cs/32519/

C-Term: Resistance to Mass Transfer (cont)

LC:

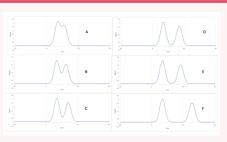
- Never adjust to thickness Monolayer
- ▶ Resistance → Negligible
- Important in MP

CmU and CsU Term Diagram

Resolution	
Define Resolution	2 peaks of interest (critical pair) ▶ Peaks closest together
	Resolved Clear separation No analyte mixing Pure peaks
	W is not affected by plate height
Successful Separation	Isolated peaks
	See baseline between peaks
	Dependent on resolution
	Can use ruler to see if baseline from beginn- ing/end match to baseline between peaks
Quantify	Use W
Resolution (R/Rs)	 Captures +/- 2σ regions of "Gaussian" peaks Corresponds to ~ 95.5% of analyte

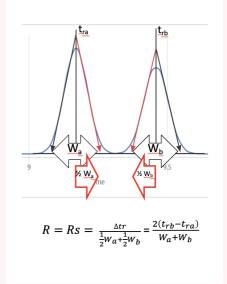
Resolution (cont)

R improves:


- ▶ Greater ∆tr
- Smaller Wa and/or Wb
- Narrow peaks = more baseline expose

Full W of peak does not matter

• Only back half (peak 1) and first half (peak 2)


2 neighbouring peaks are resolved when \Rightarrow R ≥1.5

Resolution Diagram

Graph A-C has poor resolution → Overlapping peaks Graph D has the minimum resolution requirement Graph E-F has a good resolution → See baseline between peaks

Resolution Equation

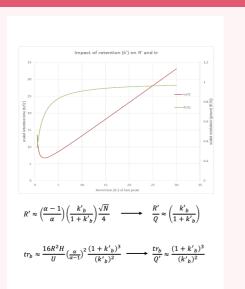
By shaylannxd

Published 14th June, 2022. Last updated 19th June, 2022. Page 6 of 9. Sponsored by CrosswordCheats.com Learn to solve cryptic crosswords! http://crosswordcheats.com

Chromatography Theory Cheat Sheet by shaylannxd via cheatography.com/149855/cs/32519/

Controlling Resolving	Power	Controlling Resolving Powe	er (cont)
Control Resolution	 Proximity of 2 peaks is important to R Controlled by separation conditions Quantify proximity: Selectivity factor → Define as a ratio of distribution constant of 2 peaks Peaks shares column → Same SP and 		N control by: Column (L) VD equations Type of column SP thickness Operating conditions
	 Peaks shares column - Same SP and MP α = ratio of retention factors Access from chromatogram Change in selectivity = change in resolution 	Effects of R' on Retention	 K' control by: SP type Phase Ratio (SP thickness) MP type (LC only) ★ R'= ★ Total run time
Effects of Retention and Selectivity on R'	Key variable that controls potential resolu- tions Resolving power (R')	Time	 Interplay Interplay between R' and tr as a function of K'
	 R' dependent: Very sensitive to selectivity (α) Somewhat sensitive to retention (K') Moderately sensitive to efficiency of column (N) Choice of column Choice of MP (LC only) 		 R': N and α ~ constant when K' is alter Replace terms with Q trb: N,H,α, U ~ constant Assume R' is not changing
	 α control by: Differential interactions between: Analyte ↔ MP↔SP 	Effects on Retention and S	dramatically Replace constant terms with Q
		$K = \frac{C_s}{C_m}$ $\alpha = \frac{\kappa_s}{\kappa_c}$	$k'_{a} = K_{a} \frac{v_{s}}{v_{m}} \qquad k'_{b} = K_{b} \frac{v_{s}}{v_{m}}$ $\frac{h}{a} \qquad \alpha = \frac{k'_{b}}{k'_{a}} = \frac{tr_{b} - t_{m}}{tr_{a} - t_{m}}$

$$\begin{split} R' &\approx \left(\frac{\alpha - 1}{\alpha}\right) \left(\frac{k'_b}{1 + k'_b}\right) \frac{\sqrt{N}}{4} & \longleftrightarrow \quad N \approx 16 R'^2 \left(\frac{\alpha}{\alpha - 1}\right)^2 \left(\frac{1 + k'_b}{k'_b}\right)^{\alpha} \\ & IF \; k'_\alpha \approx k'_b = k' \qquad THEN \; \alpha = \frac{k'_b}{k'_a} \approx 1 \\ R' &\approx (\alpha - 1) \left(\frac{k'}{1 + k'}\right) \frac{\sqrt{N}}{4} & \longleftrightarrow \quad N \approx 16 R'^2 \left(\frac{1}{\alpha - 1}\right)^2 \left(\frac{1 + k'}{k'}\right)^2 \end{split}$$


Sponsored by CrosswordCheats.com Learn to solve cryptic crosswords! http://crosswordcheats.com

By shaylannxd

Published 14th June, 2022. Last updated 19th June, 2022. Page 7 of 9.

Chromatography Theory Cheat Sheet by shaylannxd via cheatography.com/149855/cs/32519/

Effects of R' on tr

Notice that R' increases significantly at low K' but plateaus at large K'

Don't use separations with small K' (low R')

Notice that tr increases linearly with increasing k' BUT R' plateaus at large k'

• Therefore there is no real benefit to sep'ns with large k's (b/c R' \approx constant)

By shaylannxd

Published 14th June, 2022. Last updated 19th June, 2022. Page 8 of 9. Sponsored by CrosswordCheats.com Learn to solve cryptic crosswords! http://crosswordcheats.com