Cheatography

Before you start - SHAP

import xgboost

import shap

X, y = shap.d ata set s.b oston()

model = xgboos t.X GBR egr ess or( ).f it(X, vy)
explainer = shap.E xpl ain er( model)

shap v alues = explai ner (X)

Waterfall Chart
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Used to see contributions of different atributes for the prediction.
These SHAP values are valid for this observation only. With other
data points the SHAP values will change.

shap.p lot s.f orc e(s hap va lue s[0])

Force Plot

PTRATIO = 163 LSTAT = 498 RM = 6575 NoX = 0538 | AGE = 652 RAD =1

Exactly the same purpose as the waterfall chart but much more
compact

shap.p lot s.f orc e(s hap va lue s[0])
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SHAP Summaries
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If you take force plots for all observations, rotate them by 90 degrees
and then put next to each other you obtain a SHAP summary plot.
This is very useful if you want te see explanations for the entire
dataset.

shap.p lot s.f orc e(s hap va lues)
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Useful to see which attributes are the most important. For every
feature and every sample we plot a dot. We denote value of the
feature with color: big (red) or small (blue). On the X-axis we see the
importance. From this plot we see that LSTAT is probably the most
important attribute. Also, high value of RM increases the model
prediction

shap.p lot s.b ees war m(s hap va lues)
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Feature Interaction
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This one is helpful to capture feature interaction and how they
influence SHAP value for given feature. On X and Y axis we have
information about attribute we are interested in. Color represents
value of another feature that is interacting with considered. From
here we see that if RAD is small then RM have quite big impact on
the prediction whereas when RAD is big then this impact is much
smaller.
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shap.p lot s.s cat ter (sh ap_val ues [:,

color= sha p v alues)

SHAP for text

We can extend this idea to text and see how particular words
influence the prediction.

SHAP for images
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This can be also used for images to see the influence of individual
pixels.
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Before you start - OTHER XAl PLOTS

from sklearn.linear model import LinearRegression
import plotly.ex press as px

import dalex as dx

linarModel = Linear Reg res sio n().fi t(s cal -
e(X), vy)

boston rf exp =

dx.Exp lai ner (model, X, vy,

label= " Boston houses RF Pipeli ne")

Break down plot

This plot shows the decomposition of the model's prediction into
contributions of different attributes

bd = boston rf ex p.p red ict pa rts (house, ty
pe=' bre ak down')

bd.plot ()

Permutation importance
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This functions function calculates the feature importance of

estimators for a given dataset for given evaluation metrics. Can be
visualized on bar chart.

r = permut ati on imp ort anc e(m odel, X, vy)
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Tree models feature importance Linear model feature importance

Cheatography

capstangen (em) eper e ) et e (em) peta it (em)

After scaling features we can measure how each attribute is
important for the model

Tree algorithms offer importance scores based on the reduction in
the evaluation criterion, like Gini or entropy. Can be used either in px.bar (y = a bs (1 ina rM o del.c o ef ), x
regression or classification problems in decision trees, random =X.co lumns)

forests or boosting methods.

Ceteris paribus profiles (partial dependence plot)
px.bar (x= X.c olumns, y=mode 1.f eat ure im por t

an ces_)

Ceteris paribus profiles (partial dependence plot)

This figure shows how different attributes in a new instance can
change a prediction of the model.
In a nutshell, we held all explanatory variables but one (can increase

this but computational const increases by much) constant. Then we

This figure shows how different attributes in a new instance can change the values of one selected and see how the response
change a prediction of the model. changes.

In a nutshell, we held all explanatory variables but one (can increase

this but computational const increases by much) constant. Then we cp = titani c _r f e Xp.p r ed ic t
change the values of one selected and see how the response p ro f ile (house)

changes. cp.plo t (v a ri ab 1 es = [ 'NOX', 'RM

', 'DIS', 'LSTAT'])

cp = titani ¢ r f e xp.p redic tp ro f i

le (house)

cp.plo t(vari abl es = [ 'NOX', 'RM', 'DIS',

"LSTAT'])
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