
Draft - Rust Book Notes - Not a Cheat Sheet
by seannarr via cheatography.com/61019/cs/15819/

Instal lation

curl https://sh.rustup.rs -sSf | sh

export

PATH="$ HOM E/.c ar go/ bin :$P ATH "

Hello World

fn main() { printl n!(" Hello,
world! "); }

compile: rustc main.rs prinln! = macro!

create variables with let

let foo =5; // immutable (default)

let mut foo=5; //mutable

let foo=5; let foo="he llo ";
Shadowing allows reuse of variable. useful in
type conver sions

'let foo: u32 =5; //anno tating with type

using :

let foo=5; foo = 6; error[E0384]: cannot

assign twice to immutable variable foo

const

const MAX_POINTS: u32 = 100_000;

// no mut allowed on const.

// it should be annotated with

datatype.

// It is visible with in the scope

it's declared.

// only constant expression

assign ment.. not return value from
function or expression evaluated at

runtime

Prelude

Rust inserts
extern crate std;

into the crate root of every crate, and
use std::p rel ude ::v 1::*;

Prelude (cont)

into every module.
std:: pre lud e::v1

Prelude is set of types Rust imports.

Import external crate (library)

extern crate rand; //external

dependency

use rand::Rng; //bring Rng trait

which defines the methods into

scope

those in prelude, need not to

extern the crate.

just use std::io; //brings io trait

into scope

&mut and stdin() and io::Result

io::stdin() // stdin() =

std::io::Stdin instance a handle to

standard input

 .re ad_ lin e(&mut guess) // &mut
- pass by reference and make it

mutable

 .ex pec t("F ailed to read line")
// io::Result -> If returns Err, it

crashes displaying the message

io::Result -> Result, Enumer ations Ok, Err. If
ok, returns the value, if Err, it crashes program.
Without expect, compiler warning - Unused
io::Result which must be used.

Floati ng- Point Types

f32 single
precision

f64 - double precision
(default)

Math Operators

+, -, *, /

bool

true, false

let t = true; let f: bool = false;

Character Type

let c='z'; let k: char = 'a';

char is a unicode scalar value.

Tuple Type

let x:(u32 ,f6 4,u8) = (6,3.2,1); x.0
=> 6, x.1 =>3.2

destru cturing - let (a,b,c) =x; a=> 6

first index in tuple is 0. ex: x.0 => 6

Array Types

Fixed Size vs Vector's size can change

let a =[1,2,3,4]

Elements of same type

access by index: a[0], a[1]

Invalid Access a[10] :Runtime error: Index out
of bounds

match => arms; arm : pattern => code

match guess.cmp(&secret_number) {

=> arms

 Ord eri ng: :Less => printl n!
("Too small! "), //pattern => code
 Ord eri ng: :Gr eater =>
printl n!("Too big!"),
 Ord eri ng: :Equal => { //code
block

 pri ntl n!("You
win!");

By seannarr
cheatography.com/seannarr/

Published 25th May, 2018.
Last updated 26th May, 2018.
Page 1 of 14.

Sponsored by Readability-Score.com
Measure your website readability!
https://readability-score.com

http://www.cheatography.com/
http://www.cheatography.com/seannarr/
http://www.cheatography.com/seannarr/cheat-sheets/draft-rust-book-notes-not-a
https://sh.rustup.rs
http://www.cheatography.com/seannarr/
https://readability-score.com

Draft - Rust Book Notes - Not a Cheat Sheet
by seannarr via cheatography.com/61019/cs/15819/

match => arms; arm : pattern => code (cont)

 }
 }
//similar to switch case? but

concise !

Integer Types

Length Signed Unsigned

8-bit i8 u8

16-bit i16 u16

32-bit i32 u32

64-bit i64 u64

arch isize usize

------ --- --- --- --- --- --- --- ------

arch 32/64 bit system - isize =i32/64,
usize= u32/u64

Signed -(2) to 2 - 1

Unsigned 0 to 2 -1

arch (useful in indexing collec tions)

type suffix 57u8

visual separator 1_000

default type is u32 even on 64bit arch

Functions fn

snake case - lowercase words
separated by (_) underscore

fn

one_two()

{ }

Functions fn (cont)

parame ters:
name : type

fn foo_bar(x: i32,

y:u32) { }

statement vs expression

statement ends with ; and does not evaluate to
a value;

expression doesn't end with ; and evaluates to
a value

code block
expression {}
x+1 is
expression
which is
returned

let y = { let x = 3;

x + 1 } value of y will be

4;

Error: expected
expres sion,
found statement
(let)

let a = (let b =2);

functions with
return value ->
type

fn five() -> i32 { 5

}; 5 is expression as no

colon, and return value as
it's last expression

fn

plus_o ne(x:
i32) -> i32

{ x + 1; }

; turns into statement, and
empty tuple () will returned,
will be a compiler error as ()
is not i32

enums - methods

enum Message {

 Quit,
 Move { x: i32, y: i32 },
 Wri te(Str ing),
 Cha nge Col or(i32, i32, i32),
}

impl Message {

 fn call(&self) {
 // method body would be
defined here

 }
}

let m =

Messag e:: Wri te(Str ing ::f rom ("he llo "
));

m.call();

option s<T> alternate Null implem ent ation

enum Option<T> {

 Som e(T),
 None,
}

let some_n umber = Some(5);
let some_s tring = Some("a
string ");
let absent _nu mber: Option <i3 2> =
None;

//error

let x: i8 = 5;

let y: Option <i8> = Some(5);
let sum = x + y; //error as x and y

are two different types

error[E0277]: the trait bound i8:
std::o ps: :Ad d<s td: :op tio n:: Opt ion <i
8 >> is not satisfied

By seannarr
cheatography.com/seannarr/

Published 25th May, 2018.
Last updated 26th May, 2018.
Page 2 of 14.

Sponsored by Readability-Score.com
Measure your website readability!
https://readability-score.com

n - 1 n - 1

n

http://www.cheatography.com/
http://www.cheatography.com/seannarr/
http://www.cheatography.com/seannarr/cheat-sheets/draft-rust-book-notes-not-a
http://www.cheatography.com/seannarr/
https://readability-score.com

Draft - Rust Book Notes - Not a Cheat Sheet
by seannarr via cheatography.com/61019/cs/15819/

match - _ placeh older

let some_u8_value = 0u8;

match some_u 8_value {
 1 => printl n!(" one "),
 3 => printl n!(" thr ee"),
 5 => printl n!(" fiv e"),
 7 => printl n!(" sev en"),
 _ => (), unit value
}

Control flow - if { } else if { } else { }

if number == 3 { } arm

condition should
evaluate to bool
type

or mismatched types error

if condition { } else
if condition { } else
{ }

blocks of code called
arms

let a = if a == 3 { 2
} else { 5}

expres sions in all arms
should evaluate to same
type

match handling Result

let guess: u32 = match

guess.trim().parse() {

 Ok(num) => num, //Ok receives
num from return Result, which is

returned by match

 Err(_) => continue, // _
underscore catches all values

};

println!

No argument indices.. just simple brace {}

print ln! ("x = {} and y = {}", x,
y);

Control flows - while and for

while number != 3 { number =

number +1; }

let a =[1,2]; for element in

a.iter() { }

for number in

(1..4).rev() {

alternate
approach to while

Ownership

My first reaction to
the concept of
Ownership

WOW!

Value has a
variable

Owner

When owner goes
out of scope

Value is dropped

variable
assign ment,
Passing to as
function parameter
or returning from
function, it is
moved.

let s1 =

String ::f rom ("he ll
o "); let s2 = s1;
s1 is no longer valid. It is
moved. Only s2 is the
owner

error[E0382]: use of moved value: s1

Reference doesn't
have ownership

when it goes out of
scope, nothing happens.

Pass by reference it is not moved. It's just
borrowed.

References are immutable by default

Ownership (cont)

Mutable
References

fn main() {

let mut s =

String ::f rom ("he llo ");
change (&mut s); }
fn change (so me_ string:
&mut String) {

some_s tri ng.p us h_s tr(",
world"); }

Memory is managed through a system of
ownership with a set of rules that the compiler
checks at compile time. At compile time!!!

Cargo

cargo --version

cargo new hello_ cargo --bin creates

Cargo.toml and main.rs

--bin= bin (ary) or library.

source control: default git --vcs=

Cargo is Rust’s build system and package
manager.

Cargo.toml

[package]

name = " hel lo_ car go" #name of the
executable

version = " 0.1.0" #version
authors = ["Your Name

<yo u@e xam ple.co m>"] #Cargo gets
name and email from the

enviro nment
[depen den cies] #packages aka crates

TOML: Tom’s Obvious, Minimal Language

By seannarr
cheatography.com/seannarr/

Published 25th May, 2018.
Last updated 26th May, 2018.
Page 3 of 14.

Sponsored by Readability-Score.com
Measure your website readability!
https://readability-score.com

http://www.cheatography.com/
http://www.cheatography.com/seannarr/
http://www.cheatography.com/seannarr/cheat-sheets/draft-rust-book-notes-not-a
http://www.cheatography.com/seannarr/
https://readability-score.com

Draft - Rust Book Notes - Not a Cheat Sheet
by seannarr via cheatography.com/61019/cs/15819/

import crate toml

[dependencies]

 rand = " 0.3.14 " # SimVer ~
^0.3.14 any version that is

compatible with 0.3.14

Adding crates to toml file.

cargo build , cargo run , cargo check

cargo build # creates an executable

file in target /de bug /he llo _cargo

cargo run # build and run

cargo check #compi lation check, no
building execut able

cargo build --release

error[E0308]: mismatched types

error[E0308]: mismatched types -->

src/main.rs:23:21

 match
guess.c mp (& sec ret _nu mber)
 ^^ expected
struct std:: str ing ::S tring, found
integral variable

 = note: expected type
& std ::s tri ng: :St ring
 = note: found type & {in teger}

cargo.lock

Cargo maintains versions in cargo.lock file

cargo update

cargo updates all versions upto next symver

registry

Cargo fetches external depend encies and their
depend encies from registry, a copy from the
crates.io.

crates.io is a public repo

loop

loop { }

break; exits the loop

cargo test

#[cfg(test)]

mod tests {

 #[test] --> test
 fn it_works() {
 ass ert _eq!(2 + 2, 4);
 }
}

Doc-tests adder docume ntation tests? to have
examples
assert! false value, assetseq! == assertive! !=
[shoul d_p anic] to expect panic!
[ignore]
cargo test -- --test -th reads=1 stop parallel run
cargo test --noca pture , no print output
cargo test add //runs tests containing add

tests organi zation

#[cfg (test)] mod
tests { }

compile only cfg
is test

tests folder integr ation tests

struct

struct User {

 use rname: String, field => name
:type

 email: String,
 sig n_i n_c ount: u64,
 active: bool,
}

// Instan tiating
let user1 = User { //struct name

 email:
String ::f rom ("so meo ne@ exa mpl e.c om")
, //and

 use rname:
String ::f rom ("so meu ser nam e12 3"),
 active: true,
 sig n_i n_c ount: 1,
};

//dot notation

let mut user2 = User { };

user2.e mail =
String ::f rom ("so meo ne@ exa mpl e.c om")
;

unit-like structs without fileds () .. Used to
implement traits with out data on the type.

ownership - lifetimes?

Comments

// /* */

//! //

tuple structs

struct Color(i32, i32, i32);

struct Point(i32, i32, i32);

let black = Color(0, 0, 0);

let origin = Point(0, 0, 0);

By seannarr
cheatography.com/seannarr/

Published 25th May, 2018.
Last updated 26th May, 2018.
Page 4 of 14.

Sponsored by Readability-Score.com
Measure your website readability!
https://readability-score.com

^^^^

http://www.cheatography.com/
http://www.cheatography.com/seannarr/
http://www.cheatography.com/seannarr/cheat-sheets/draft-rust-book-notes-not-a
http://www.cheatography.com/seannarr/
https://readability-score.com

Draft - Rust Book Notes - Not a Cheat Sheet
by seannarr via cheatography.com/61019/cs/15819/

struct - instan tiating options

// .. shorthand

let user2 = User {

 email:
String ::f rom ("an oth er@ exa mpl e.c om")
,

 use rname:
String ::f rom ("an oth eru ser nam e56 7"),
 ..user1 // .. remaining fields
should be from user1 instance

};

// shorthand - when variables and

fields have same names

let email ="";

let user2 = User {

 email //shor tHand
}

struct methods

struct Rectangle {

 width: u32,
 height: u32,
}

impl Rectangle {

 fn area(&self) -> u32 { //first
parameter should be self , instance

of the struct

 sel f.width * self.h eight
 }
 fn square (size: u32) ->
Rectangle { //asso ciated function
Rectan gle ::s quare
 Rec tangle { width: size,
height: size }

 }
}

&mut self to modify struct

struct #[deri ve(Debug)]

printl n!(" rect1 is {}", rect1);

error[E0277]: the trait bound Recta ngle:
std::f mt: :Di splay is not satisfied

{:?} ? to use Debug Trait

#[der ive (De bug)]
struct Rectangle {

width: u32, height: u32

}

{:#?} to pretty print

Derived Traits

struct as expression

fn build_user(email: String,

username: String) -> User {

 User {
 email: email,
 use rname: username,
 active: true,
 sig n_i n_c ount: 1,
 }
}

modules

mod network {

 fn connect() {
 }
 mod client { //nested module
 fn connect() {
 }
 }
}

networ k:: cli ent ::c onn ect();
networ k:c onn ect();

module - refere ncing a submodule

mod client; => mod client {

//client.rs contents here }

mod network {

 //s nippet
}

//contents of clents.rs

fn connect { // No need to add mod

declar ation
}

module s-tree

communicator

 ├── client

 └── network

 └── server
└── src

 ├── client.rs
 ├── lib.rs // mod client; mod
network;

 └── network
 ├── mod.rs mod server;
 └── server.rs

modules- rules

└── foo

 ├── bar.rs (contains the
declar ations in foo:: bar)
 └── mod.rs (contains the
declar ations in foo, including mod
bar)

If a module named foo has no submod ules, you
should put the declar ations for foo in a file
named foo.rs.

If a module named foo does have
submod ules, you should put the declar ations
for foo in a file named foo/mo d.rs.

By seannarr
cheatography.com/seannarr/

Published 25th May, 2018.
Last updated 26th May, 2018.
Page 5 of 14.

Sponsored by Readability-Score.com
Measure your website readability!
https://readability-score.com

http://www.cheatography.com/
http://www.cheatography.com/seannarr/
http://www.cheatography.com/seannarr/cheat-sheets/draft-rust-book-notes-not-a
http://www.cheatography.com/seannarr/
https://readability-score.com

Draft - Rust Book Notes - Not a Cheat Sheet
by seannarr via cheatography.com/61019/cs/15819/

pub - privacy rules

If an item is public

it can be accessed through any of its parent
modules

If an item is private

it can be accessed only by its immediate
parent module and any of the parent’s
child modules

use

bring modules into scope.

pub mod a {

 pub mod series {
 pub mod of {
 pub fn
nested _mo dules() {}
 }
 }
}

fn main() {

 a:: ser ies ::o f:: nes ted _mo dul es()
;

}

use a::ser ies ::of;
fn main() {

 of: :ne ste d_m odu les();
}

In use statement, paths are relative to the crate
root by default
super:: confusing? if the module privacy rules
state that parent and its immediate children of
the parent can access private items, then why
we need Super?

Ownership - References Rules

Only one mutable reference in a

particular scope. Prevents datarace

let mut s = String ::f rom ("he llo ");
let r1 = &mut s;

let r2 = &mut s; // error [E0 499]:

cannot borrow s as mutable more

than once at a time

Combin ation of mutable and
immutable references are not

allowed. to guarantee

immuta bility.
let mut s = String ::f rom ("he llo ");
let r1 = &s; // no problem

let r2 = &s; // no problem

let r3 = &mut s; // error[E0502]:
cannot borrow s as mutable because

it is also borrowed as immutable

One mutable reference restri ction prevents
data race.
Only All Readers or just One Writer are
allowed.

Dangling References

fn main() {

 let refere nce _to _no thing =
dangle();

}

fn dangle() -> &S tring {
 let s =
String ::f rom ("he llo ");
 &s // It is returning
reference, borrowed value..

requiring s to be live outside this

scope

} //Compiler check

error[E0106]: missing lifetime specifier
= help: this function's return type contains a
borrowed value, but there is
no value for it to be borrowed from
= help: consider giving it a 'static lifetime

Slices

fn main() {

 let mut s =
String ::f rom ("hello world");
 let word = first_ wor d(&s);
 s.c lear(); // Error!
}

fn first_ word(s: &S tring) -> &str
//immu table {
 let bytes = s.as_b ytes();
 for (i, &item) in
bytes.i te r().en ume rate() {
 if item == b' ' {
 return &s [0..i];
//borrowed as immutable

 }
 }
 &s[..]
}

error[E0502]: cannot borrow s as mutable
because it is also borrowed as immutable.
Slicing : [..1] to start at 0, [2..] to the end.

enums

enum IpAddrKind {

 V4,
 V6,
}

struct IpAddr {

 kind: IpAddr Kind, // type
 add ress: String,
}

let home = IpAddr {

 kind: IpAddr Kin d::V4,

By seannarr
cheatography.com/seannarr/

Published 25th May, 2018.
Last updated 26th May, 2018.
Page 6 of 14.

Sponsored by Readability-Score.com
Measure your website readability!
https://readability-score.com

http://www.cheatography.com/
http://www.cheatography.com/seannarr/
http://www.cheatography.com/seannarr/cheat-sheets/draft-rust-book-notes-not-a
http://www.cheatography.com/seannarr/
https://readability-score.com

Draft - Rust Book Notes - Not a Cheat Sheet
by seannarr via cheatography.com/61019/cs/15819/

enums (cont)

 add ress:
String ::f rom ("12 7.0.0.1 "),
};

let loopback = IpAddr {

 kind: IpAddr Kin d::V6,
 add ress: String ::f rom (":: 1"),
};

enums - variations

enum IpAddr {

 V4(u8, u8, u8, u8),
 V6(Str ing),
}

struct Ipv4Addr {

 // --snip--
}

struct Ipv6Addr {

 // --snip--
}

enum IpAddr {

 V4(Ipv 4Addr),
 V6(Ipv 6Addr),
}

enum Message {

 Quit,
 Move { x: i32, y: i32 },
 Wri te(Str ing),
 Cha nge Col or(i32, i32, i32),
}

enum - bringing some variants into scope

enum TrafficLight {

 Red,
 Yellow,
 Green,
}

use Traffi cLi ght ::{Red, Yellow};
fn main() {

 let red = Red;
 let yellow = Yellow;
 let green =
Traffi cLi ght ::G reen;
}

or

use Traffi cLi ght::*;

glob operator * to bring all items in a
namespace.

match - enum

enum Coin {

 Penny,
 Nickel,
 Dime,
 Qua rte r(U sSt ate),
}

fn value_ in_ cen ts(coin: Coin) ->
u32 {

 match coin {
 Coi n:: Penny => 1,
 Coi n:: Nickel => 5,
 Coi n::Dime => 10,
 Coi n:: Qua rte r(s tate) => {
// state value is bind to the

variable

match - enum (cont)

 pri ntl n!(" State quarter
from {:?}!", state);

 25
 },
 }
}

if let

let some_u8_value = Some(0u8);

match some_u 8_value {
 Some(3) => printl n!(" thr ee"),
 _ => (),
}

or

//if let concise for one pattern

if let Some(3) = some_u 8_value {
 pri ntl n!(" thr ee");
}

vectors Vec<T>, vec! macro

let v:

Vec<i3 2> =
Vec::n ew();

annotate type when not
initia lized with data

let v = vec![1,

2, 3];

macro vec! to create
instance and hold data

By seannarr
cheatography.com/seannarr/

Published 25th May, 2018.
Last updated 26th May, 2018.
Page 7 of 14.

Sponsored by Readability-Score.com
Measure your website readability!
https://readability-score.com

http://www.cheatography.com/
http://www.cheatography.com/seannarr/
http://www.cheatography.com/seannarr/cheat-sheets/draft-rust-book-notes-not-a
http://www.cheatography.com/seannarr/
https://readability-score.com

Draft - Rust Book Notes - Not a Cheat Sheet
by seannarr via cheatography.com/61019/cs/15819/

vectors Vec<T>, vec! macro (cont)

let mut v =

Vec::n ew();
v.push(5);

v.push(6);

mut to update the
vector. Rush infers the
datatype from push.

Inferring datatype from push?

fn function pointer

Use existing functions in place of

closure :

fn add_one(x: i32) -> i32 {

 x + 1
}

fn do_twi ce(f: fn(i32) -> i32, arg:
i32) -> i32 {

 f(arg) + f(arg)
}

fn main() {

 let answer = do_twi ce(add _one,
5);

 pri ntl n!("The answer is: {}",
answer);

}

//return the closure

fn return s_c los ure() ->
Box<Fn (i32) -> i32> {
 Box ::n ew(|x| x + 1)
}

Vector access elements

let v = vec![1, 2, 3, 4, 5];

let third: &i32 = &v[2]; => access

with reference

let third: Option <& i32> = v.get(2);
//return None

let hundredth: &i32 = &v [100];
//panic , use get

//

Vector access elements (cont)

let mut v = vec![1, 2, 3, 4, 5];

let first = &v[0]; // immutable

borrowing

v.push(6); //immu table borrow
above line, it's error to borrow

mutable reference again

Vector iterator

let v = vec![100, 32, 57];

for i in &v {

 pri ntl n!(" {}", i);
}

//mutable vector and i to

derefe rence using

let mut v = vec![100, 32, 57];

for i in &mut v {

 *i += 50;
}

Vector: enum to store different types

enum SpreadsheetCell {

 Int (i32),
 Flo at(f64),
 Tex t(S tring),
}

let row = vec![

 Spr ead she etC ell ::I nt(3),
 Spr ead she etC ell ::T ext (St rin g:: f
ro m("b lue ")),
 Spr ead she etC ell ::F loa t(1 0.12),
];

String, str

str: string literals are stored in

the binary program.

format: UTF8

OsString, OsStr, CString, and CStr

are string variant libraries.

//creating strings

let mut s = String ::n ew();
let s = " initial
conten ts".t o_ str ing();
//to_s tring and from are matter of
style

let s = String ::f rom ("in itial
conten ts");
let hello =

String::from(" ");

//utf-8

String update and concat enation +/ format!

let mut s = String::from("foo");

s.push _st r("b ar"); // foobar append
, it takes slice so no ownership

transfer

let mut s = String ::f rom ("lo ");
s.push ('l'); //char acter , lol
// concat enation +
let s1 = String ::f rom ("Hello, ");
let s2 = String ::f rom ("wo rld !");
let s3 = s1 + &s2; // Note s1 has

been moved here and can no longer

be used

fn add(self, s: &str) -> String {

// s2 string => str deref coersion

&s2 => &s 2[..]
//more than two string, use

let s1 = String ::f rom ("ti c");
let s2 = String ::f rom ("ta c");

By seannarr
cheatography.com/seannarr/

Published 25th May, 2018.
Last updated 26th May, 2018.
Page 8 of 14.

Sponsored by Readability-Score.com
Measure your website readability!
https://readability-score.com

http://www.cheatography.com/
http://www.cheatography.com/seannarr/
http://www.cheatography.com/seannarr/cheat-sheets/draft-rust-book-notes-not-a
http://www.cheatography.com/seannarr/
https://readability-score.com

Draft - Rust Book Notes - Not a Cheat Sheet
by seannarr via cheatography.com/61019/cs/15819/

String update and concat enation +/ format!
(cont)

let s3 = String ::f rom ("to e");
let s = format !("{ }-{ }-{ }", s1, s2,
s3);

strings indexing

let s1 = String ::f rom ("he llo "); let
h = s1[0];

error[E0277]: the trait bound
std:: str ing ::S tring:
std::o ps: :In dex <{i nte ger }> is not

satisfied
A String is a wrapper over a Vec<u8 >. UTF8, 2
bytes for some charac ters, 1byte for some

let len = String ::f rom ("Ho la").len(); => 4

let len = String ::f rom ("Зд рав ств уйт е").l en(); =>
24

Error - Recove rable Result, Unreco verable
panic!

RUST_ BAC KTR AC
E=1 cargo run

stack trace ? (enable
debug symbols)

Err(ref error) if
error.k ind() ==
ErrorK ind ::N otFou
nd =>

error.k ind()

unwrap error => panic, ok=>
returns value

expect message when error
occurs

let mut f =

File:: ope n("
h ell o.t xt")?;

? to propagate error. From
trait. From:: from, error type
should implement from

File: :op en(" hel lo.t xt ")?.r ea d_t o_s t
ri ng(&mut s)?;

Error - Recove rable Result, Unreco verable
panic! (cont)

? for return type Result

Stack unwinding -
[profi le.r el ease]
panic = 'abort'

Cargo in depth

//Cargo profiles

[profi le.dev]
opt-level = 0 //over riding defaults
[profi le.r el ease]
opt-level = 3

//re exporting API

pub use kinds: :Pr ima ryC olor;
pub use kinds: :Se con dar yColor;
pub use utils: :mix;
cargo.io login: cargo login

abcdef ghi jkl mno pqr stu vwx yz0 12345
unique package name to publish and

cargo publish

cargo yank --vers 1.0.1

HashMa p<K, V>

use std::collections::HashMap; keys

of the same type and values of the

same type.

let mut scores = HashMa p:: new();
scores.in ser t(S tri ng: :fr om(" Blu e"),
10);

scores.in ser t(S tri ng: :fr om(" Yel low "
), 50);

//creating a hash map from two

vectors

let teams = vec!

[S tri ng: :fr om(" Blu e"),
String ::f rom ("Ye llo w")];

HashMa p<K, V> (cont)

let initia l_s cores = vec![10, 50];
let scores: HashMa p<_, _> =
teams.i te r().zi p(i nit ial _sc ore s.i te
r ()).co lle ct();
//HashMap to get the desired type

from collect .. strange way of

specifying return value

// _, _ Rust infers the data types

of Key and Value

//access value

let mut scores = HashMa p:: new();
scores.in ser t(S tri ng: :fr om(" Blu e"),
10);

scores.in ser t(S tri ng: :fr om(" Yel low "
), 50);

let team_name =

String ::f rom ("Bl ue");
let score =

scores.ge t(&te am_ name); //get
//iter ating
for (key, value) in &s cores { }
//To only insert if key doesn't

have a value

scores.en try (St rin g:: fro m("Y ell ow"
)).o r_i nse rt(50); //returns mutable
reference

// let count =

map.en try (wo rd).or _in ser t(0); //to
insert 0, for first time key

insertion

BuildH asher type: default is crypto gra phi cally
secure hashing, can be slow
Values are moved, and Hashmap takes the
ownership of keys and values.

Hasmap insert doesn't take the ownership.
insert of a existing key overrides the value

By seannarr
cheatography.com/seannarr/

Published 25th May, 2018.
Last updated 26th May, 2018.
Page 9 of 14.

Sponsored by Readability-Score.com
Measure your website readability!
https://readability-score.com

http://www.cheatography.com/
http://www.cheatography.com/seannarr/
http://www.cheatography.com/seannarr/cheat-sheets/draft-rust-book-notes-not-a
http://www.cheatography.com/seannarr/
https://readability-score.com

Draft - Rust Book Notes - Not a Cheat Sheet
by seannarr via cheatography.com/61019/cs/15819/

Generic data types <T>

fn largest<T>(list: &[T]) -> T

struct Point< T> {
 x: T,
 y: T,
}

struct Point<T, U> {

 x: T,
 y: U,
}

enum Option <T> {
 Som e(T),
 None,
}

struct Point< T> {
 x: T,
 y: T,
}

impl<T> Point< T> {
 fn x(&self) -> &T {
 &s elf.x
 }
}

impl Point< f32> { //specific type
 fn distan ce_ fro m_o rig in(&self)
-> f32 {

 (se lf.x.p owi(2) +
self.y.po wi(2)).sqrt()
 }
}

struct Point<T, U> {

Generic data types <T> (cont)

 x: T,
 y: U,
}

//mixup

impl<T, U> Point<T, U> {

 fn mixup<V, W>(self, other:
Point<V, W>) -> Point<T, W> {

 Point {
 x: self.x,
 y: other.y,
 }
 }
}

Monomo rph ization to specify concrete code at
compile time

trait

pub trait Summary {

 fn summar ize _au tho r(&self) ->
String;

 fn summar ize (& self) -> String
{

 for mat !("(Read more from
{}...) ", self.s umm ari ze_ aut hor())
//default can call other methods in

the trait.

 }
}

pub struct NewsAr ticle {
 pub headline: String,
 pub location: String,
 pub author: String,

trait (cont)

 pub content: String,
}

impl Summary for NewsAr ticle {
 fn summar ize (& self) -> String
{

 for mat !("{}, by {} ({})",
self.h ead line, self.a uthor,
self.l oca tion)
 }
}

pub struct Tweet {

 pub username: String,
 pub content: String,
 pub reply: bool,
 pub retweet: bool,
}

impl Summary for Tweet { //for

 fn summar ize (& self) -> String
{

 for mat !("{}: {}",
self.u ser name, self.c ontent)
 }
}

//default implem ent ation
fn summar ize (& self) -> String {
 Str ing ::f rom ("(Read
more...)")

 }
//to use default implem ent ation,
impl Summary for NewsAr ticle {}
//empty block

we can implement a trait on a type only if either
the trait or the type is local to your crate.
cohere nce /orphan rule:p eople’s code can’t
break your code and vice versa

By seannarr
cheatography.com/seannarr/

Published 25th May, 2018.
Last updated 26th May, 2018.
Page 10 of 14.

Sponsored by Readability-Score.com
Measure your website readability!
https://readability-score.com

http://www.cheatography.com/
http://www.cheatography.com/seannarr/
http://www.cheatography.com/seannarr/cheat-sheets/draft-rust-book-notes-not-a
http://www.cheatography.com/seannarr/
https://readability-score.com

Draft - Rust Book Notes - Not a Cheat Sheet
by seannarr via cheatography.com/61019/cs/15819/

Generic constr aints

// +

fn some_f unc tio n<T: Display +
Clone, U: Clone + Debug>(t: T, u:

U) -> i32 {

//where clause: with mutilple

trait bounds

fn some_f unc tio n<T, U>(t: T, u: U)
-> i32

 where T: Display + Clone,
 U: Clone + Debug
{

Condit ionally implement on bounds: impl<T:
Display + Partia lOr d> Pair<T> {

lifetimes

{

 let r;
 {
 let x = 5;
 r = &x;
 }
 pri ntl n!("r: {}", r);
}

error[E0597]: x does not live
long enough

fn longest(x: &str, y: &str) ->

&str {

 if x.len() > y.len() {
 x
 } else {
 y
 }
}

error[E0106]: missing lifetime
specifier

lifetimes (cont)

//lifetime annota tions with
generics -- means all x, y are has

the same lifetime

fn longes t<' a>(x: &'a str, y: &'a
str) -> &'a str {

 if x.len() > y.len() {
 x
 } else {
 y
 }
}

smaller lifetime is chosen.
static - let s: &' static str = "I have a static
lifeti me." ;

Iterator

trait Iterator {

 type Item;
 fn next(&mut self) ->
Option <Se lf: :It em>;
 // methods with default
implem ent ations elided
}

1.The iter method produces an iterator over
immutable refere nces.
2. into_iter to take over ownership of the
parent and returns owned values
3. iter_mut - iterate over mutable references
4. consuming adaptors -> uses up iterator
such as sum()
5. chain of iterator adaptors following a
consumer adaptor gets you the results (ex:
collect())
6.

Box<T>, RC< T>, RefCel l<T>

RC< T> Box<T> RefCel l<T>

multiple Single Single Data
Ownership

immutable immutable
or
mutable

immutable
or
mutable

Borrowing

compile
time

compile
time

runtime checked
at

Because RefCel l<T> allows mutable borrows
checked at runtime, we can mutate the value
inside the RefCel l<T> even when the RefCel l<T>
is immutable

let y = &mut x;? let mut y = x; confusion?

threads

let handle = std::thread::spawn(|| {

//spawn new thread

 for i in 1..10 {
 pri ntl n!("hi number {}
from the spawned thread !", i);
 std ::t hre ad: :sl eep (st d:: t
im e:: Dur ati on: :fr om_ mil lis (1));
 }
 });
 han dle.jo in().u nwr ap(); //wait to
finish

let v = vec![1, 2, 3];

 let handle = thread ::s paw n(move
|| { => to let capture take the

ownership

 pri ntl n!(" Here's a vector:
{:?}", v);

 });

By seannarr
cheatography.com/seannarr/

Published 25th May, 2018.
Last updated 26th May, 2018.
Page 11 of 14.

Sponsored by Readability-Score.com
Measure your website readability!
https://readability-score.com

http://www.cheatography.com/
http://www.cheatography.com/seannarr/
http://www.cheatography.com/seannarr/cheat-sheets/draft-rust-book-notes-not-a
http://www.cheatography.com/seannarr/
https://readability-score.com

Draft - Rust Book Notes - Not a Cheat Sheet
by seannarr via cheatography.com/61019/cs/15819/

threads (cont)

error[E0373]: closure may outlive
the current function, but it

borrows v,

which is owned by the current

function

 after move drop(v) ^ error value
used here after move

JoinHandle is an owned value ?

Closures - Enviro nment capture - Traits

Taking
ownership
FnOnce

as it takes ownership of variables it
uses from the enviro nment,
closure can be called once

Borrowing
mutably
FnMut

It borrows mutably, so it can
change the enviro nment

Borrowing immutably " Fn"

Can FnMut be called multiple times? (which
tries borrow mutably in every call) Yes, as call
finishes, the variables are available for
borrowing.
let equal_to_x = move |z| z == x; to move the
ownership of x to the closure.

threads - channel mpsc

use std::sync::mpsc;

let (tx, rx) = mpsc:: cha nnel(); tx:
transm itter, rx: receiver
 thr ead ::s paw n(move || {
 let val =
String ::f rom ("hi ");

threads - channel mpsc (cont)

 tx.s en d(v al).un wra p() ;//sen
d takes the ownership of val

 });
let tx1 =

mpsc:: Sen der ::c lon e(&tx); //clone a
transm itter

mpsc : multiple producer, single consumer =>
multiple senders and one receiver

Mutex< T> , Arc<T>

let counter =

Arc::new(Mutex::new(0));

 let mut handles = vec![];
 for _ in 0..10 {
 let counter =
Arc::c lon e(&co unter); //clone
 let handle =
thread ::s paw n(move || {
 let mut num =
counte r.l ock ().u nw rap();
 *num += 1;
 });
 han dle s.p ush (ha ndle);
 }

Sync and Send

concur rency is part of the standard library not
the language.

two concur rency concepts embedded in the
language: the std::m arker traits Sync and Send

Sync and Send (cont)

The Send marker trait
indicates that ownership of
the type implem enting Send
can be transf erred between
threads

except Rc< T>
multiple
references but
can't be shared
between threads

The Sync marker trait indicates that it is safe
for the type implem enting Sync to be
referenced from multiple threads

In other words, any type T is Sync if &T (a
reference to T) is Send, meaning the reference
can be sent safely to another thread

closures

let expensive_closure = |num: u32|

-> u32 {

 pri ntl n!(" cal cul ating
slowly...");
 thr ead ::s lee p(D ura tio n:: fr
o m_s ecs (2));
 num
 };
// type inference

let exampl e_c losure = |x| x;
let s =

exampl e_c los ure (St rin g:: fro m("h ell o
"));

let n = exampl e_c los ure(5); //error
type inference only one type

// memoiz ation or lazy
evalua tions
impl<T> Cacher <T>
 where T: Fn(u32) -> u32
{

 fn new(ca lcu lation: T) ->
Cacher <T> {

By seannarr
cheatography.com/seannarr/

Published 25th May, 2018.
Last updated 26th May, 2018.
Page 12 of 14.

Sponsored by Readability-Score.com
Measure your website readability!
https://readability-score.com

http://www.cheatography.com/
http://www.cheatography.com/seannarr/
http://www.cheatography.com/seannarr/cheat-sheets/draft-rust-book-notes-not-a
http://www.cheatography.com/seannarr/
https://readability-score.com

Draft - Rust Book Notes - Not a Cheat Sheet
by seannarr via cheatography.com/61019/cs/15819/

closures (cont)

 Cacher {
 cal cul ation,
 value: None,
 }
 }
 fn value(&mut self, arg: u32) -
> u32 {

 match self.value {
 Some(v) => v,
 None => {
 let v =
(self.c al cul ati on) (arg);
 sel f.value =
Some(v);

 v
 },
 }
 }
}

let mut expens ive _result =
Cacher ::n ew(|num| {
 pri ntl n!(" cal cul ating
slowly...");
 thr ead ::s lee p(D ura tio n:: fr
o m_s ecs (2));
 num
 });
//memo ization

unsafe

Implem enting
unsafe trait

unsafe trait Foo {

}

 unsafe impl Foo for

i32 { }

mutating static is unsafe

unsafe (cont)

extern " C" { }
Foreign Function
Interface (FFI)

call in unsafe block

C : applic ation
binary interface
(ABI)

extern " C" { fn
abs(input: i32) ->

i32; }

Calling Rust from
other languages

#[no_ mangle]
pub extern " C" fn
call_f rom_c() {
printl n!("Just
called a Rust

function from C!");

}

unsafe block to call unsafe functions

1. Derefe rence a raw pointer
2. Call an unsafe function or method
3. Access or modify a mutable static variable
4. Implement an unsafe trait

Raw pointers

Different from references and smart

pointers, keep in mind that raw

pointers:

1. Are allowed to ignore the

borrowing rules and have both

immutable and mutable pointers, or

multiple mutable pointers to the

same location

2. Aren’t guaranteed to point to

valid memory

3. Are allowed to be null

4. Don’t implement any automatic

clean-up

let mut num = 5;

let r1 = &num as *const i32;

Raw pointers (cont)

let r2 = &mut num as *mut i32;

unsafe { //dere fer encing
 pri ntl n!("r1 is: {}", *r1);
 pri ntl n!("r2 is: {}", *r2);
}

const i32 and mut i32 raw pointers

that both pointed to the same

memory location, that of num. If

instead we’d tried to create an

immutable and a mutable reference

to num, this would not have

compiled because Rust’s ownership

rules don’t allow a mutable

reference at the same time as any

immutable refere nces. With raw
pointers, can create mutable

pointer and an immutable pointer to

the same location, and change data

through the mutable pointer,

potent ially creating a data race.

Lifetimes adv

In our definition of Parser, in

order to say that 's (the lifetime

of the string slice) is guaranteed

to live at least as long as 'c (the

lifetime of the reference to

Context), we change the lifetime

declarations to look like this:

struct Parser <'c, 's: 'c> {
 con text: &'c Contex t<' s>,
}

// lifetime bounds on references to

Generic Types

struct Static Ref <T: 'stati c>
(&' static T);
struct Ref<'a, T: 'a> (&'a T);
//Infe rence of Tait life times

By seannarr
cheatography.com/seannarr/

Published 25th May, 2018.
Last updated 26th May, 2018.
Page 13 of 14.

Sponsored by Readability-Score.com
Measure your website readability!
https://readability-score.com

http://www.cheatography.com/
http://www.cheatography.com/seannarr/
http://www.cheatography.com/seannarr/cheat-sheets/draft-rust-book-notes-not-a
http://www.cheatography.com/seannarr/
https://readability-score.com

Draft - Rust Book Notes - Not a Cheat Sheet
by seannarr via cheatography.com/61019/cs/15819/

Lifetimes adv (cont)

The default lifetime of a trait

object is 'static.

With &'a Trait or &'a mut Trait,

the default lifetime is 'a.

With a single T: 'a clause, the

default lifetime is 'a.

With multiple T: 'a-like clauses,

there is no default; we must be

explicit.

Box<Red + 'a> or Box<Red +

'stati c>
 Just as with the other bounds,

this means that any implem entor of
the Red trait that has references

inside must have the same lifetime

specified in the trait object

bounds as those references

Advanced Traits

pub trait Iterator {

 type Item; // place holder
 fn next(&mut self) ->
Option <Se lf: :It em>;
}

//With Generic, needs to annotate

the type

//Default generic type

trait Add<RH S=S elf> { // RHS is
self type a = a + a

 type Output;
 fn add(self, rhs: RHS) ->
Self:: Output;
}

fn main() {

 let person = Human;
 Pil ot: :fl y(&pe rson); //quality
to avoid ambiguity

 Wiz ard ::f ly(&p erson);

Advanced Traits (cont)

 per son.fly();
}

Assosc iated functions:
//As no self, it can infer

<Dog as Animal >:: bab y_n ame()
//NewType

use tuple to creat traits on

external types

Implem ented directly on the type has
precedence over trait impls

Advanced Types

type Kilometers = i32; Type aliases

let f: Box<Fn() + Send + 'stati c> = Box::n ew(||
printl n!(" hi"));

type Thunk = Box<Fn() + Send + 'stati c>;

type Result <T> = Result <T, std::i o:: Err or>;

! never type = void

iterating over string - bytes() and chars()

for c in " ".chars() {

 pri ntl n!(" {}", c);
}

for b in " ".bytes() {

 pri ntl n!(" {}", b);

iterating over string - bytes() and chars()
(cont)

}

224

164

// --snip--

165

135

Cargo workspaces

[workspace]

members = [

 " add er",
]

├── Cargo.lock

├── Cargo.toml

├── add-one

│ ├── Cargo.toml

│ └── src

│ └── lib.rs

├── adder

│ ├── Cargo.toml

│ └── src

│ └── main.rs

└── target

[depen den cies]
add-one = { path = "../ add -on e" }
-- explicit

cargo run -p adder //to run

cargo install $HOME/.ca rgo/bin
cargo- som ething => cargo something

worksp aces: all related crates share Cargo.lock
and output directory.
depend encies should be added to cargo.toml
files to extern crate

By seannarr
cheatography.com/seannarr/

Published 25th May, 2018.
Last updated 26th May, 2018.
Page 14 of 14.

Sponsored by Readability-Score.com
Measure your website readability!
https://readability-score.com

http://www.cheatography.com/
http://www.cheatography.com/seannarr/
http://www.cheatography.com/seannarr/cheat-sheets/draft-rust-book-notes-not-a
http://www.cheatography.com/seannarr/
https://readability-score.com

	Draft - Rust Book Notes - Not a Cheat Sheet - Page 1
	Installation
	Math Operators
	bool
	Hello World
	Import external crate (library)
	Character Type
	create variables with let
	Tuple Type
	&mut and stdin() and io::Result
	Array Types
	const
	match => arms; arm : pattern => code
	Floating-Point Types
	Prelude

	Draft - Rust Book Notes - Not a Cheat Sheet - Page 2
	enums - methods
	Integer Types
	options<T> alternate Null implementation
	Functions fn

	Draft - Rust Book Notes - Not a Cheat Sheet - Page 3
	match - _ placeholder
	println!
	Control flows - while and for
	Control flow - if { } else if { } else { }
	Cargo
	Ownership
	match handling Result
	Cargo.toml

	Draft - Rust Book Notes - Not a Cheat Sheet - Page 4
	import crate toml
	registry
	struct
	loop
	cargo build , cargo run , cargo check
	cargo test
	error[E0308]: mismatched types
	tests organization
	Comments
	cargo.lock
	tuple structs
	cargo update

	Draft - Rust Book Notes - Not a Cheat Sheet - Page 5
	struct - instantiating options
	struct #[derive(Debug)]
	module - referencing a submodule
	modules-tree
	struct as expression
	struct methods
	modules
	modules- rules

	Draft - Rust Book Notes - Not a Cheat Sheet - Page 6
	pub - privacy rules
	Ownership - References Rules
	Slices
	use
	Dangling References
	enums

	Draft - Rust Book Notes - Not a Cheat Sheet - Page 7
	enum - bringing some variants into scope
	if let
	enums - variations
	match - enum
	vectors Vec<T>, vec! macro

	Draft - Rust Book Notes - Not a Cheat Sheet - Page 8
	String, str
	fn function pointer
	Vector iterator
	String update and concatenation +/ format!
	Vector: enum to store different types
	Vector access elements

	Draft - Rust Book Notes - Not a Cheat Sheet - Page 9
	strings indexing
	Cargo in depth
	Error - Recoverable Result, Unrecoverable panic!
	HashMap<K, V>

	Draft - Rust Book Notes - Not a Cheat Sheet - Page 10
	Generic data types <T>
	trait

	Draft - Rust Book Notes - Not a Cheat Sheet - Page 11
	Generic constraints
	Box<T>, RC<T>, RefCell<T>
	threads
	lifetimes
	Iterator

	Draft - Rust Book Notes - Not a Cheat Sheet - Page 12
	Mutex<T> , Arc<T>
	Closures - Environment capture - Traits
	closures
	threads - channel mpsc
	Sync and Send

	Draft - Rust Book Notes - Not a Cheat Sheet - Page 13
	Raw pointers
	Lifetimes adv
	unsafe

	Draft - Rust Book Notes - Not a Cheat Sheet - Page 14
	Cargo workspaces
	Advanced Types
	Advanced Traits
	iterating over string - bytes() and chars()

