Draft - Rust Book Notes - Not a Cheat Sheet
by seannarr via cheatography.com/61019/cs/15819/

Cheatography

Installation Math Operators

curl https://sh.rustup.rs -sSf | sh into every module. +, -5

export std::prelude::vl

PATH="$HOME/ .cargo/bin: $PATH"

Prelude is set of types Rust imports.

true, false

Hello World Import external crate (library)

let t = true; let f: bool = false;

fn main() { println! ("Hello,

extern crate rand; //external

world!"); 1} Character Type

dependency

compile: rustc main.rs prinin! = macro! use rand::Rng; //bring Rng trait let c='z'; let k: char = 'a';

which defines the methods into .
char is a unicode scalar value.
create variables with let

scope

let foo =5;//immutable (default) those in prelude, need not to Tuple Type
extern the crate.
let mut foo=5; //mutable . . .)) let x:(u32,f64,u8) = (6,3.2,1); x.0
just use std::io; //brings io trait
= 6, x.1 =>3.2

let foo=5; let foo="hello"; into scope

Shadowing allows reuse of variable. useful in destructuring - let (a,b,c) =x; a=>6

lyps conversions &mut and stdin() and io::Result

first index in tuple is 0. ex: x.0 => 6

'let foo: u32 =5; //annotating with type
io::stdin() // stdin() =

using : Array Types

std::10::5tdin instance a handle to

let foo=5; foo = 6; error[E0384]: cannot , . . .
[] standard input Fixed Size vs Vector's size can change
assign twice to immutable variable foo)

.read_line (&mut guess) // &mut

leta =[1,2,3,4]

= b £ d ke it
pass by reference and make i Elements of same type

mutable
access by index: a[0], a[1]

const MAX_ POINTS: u32 = 100_000;

// no mut allowed on const.

// it should be annotated with
datatype.

// It is visible with in the scope
it's declared.

// only constant expression
assignment.. not return value from
function or expression evaluated at

runtime

Prelude

Rust inserts
extern crate std;
into the crate root of every crate, and

use std::prelude::vl::*;

By seannarr

cheatography.com/seannarr/

.expect ("Failed to read line")
// io::Result -> If returns Err, it

crashes displaying the message

io::Result -> Result, Enumerations Ok, Err. If
ok, returns the value, if Err, it crashes program.
Without expect, compiler warning - Unused
io::Result which must be used.

Floating-Point Types

32 single f64 - double precision

precision (default)

Published 25th May, 2018.
Last updated 26th May, 2018.
Page 1 of 14.

Invalid Access a[10] :Runtime error: Index out
of bounds

match => arms; arm : pattern =) code

match guess.cmp (&secret_number) {
=> arms
Ordering::Less => println!
("Too small!"), //pattern => code
Ordering: :Greater =>
println! ("Too big!™"),
Ordering::Equal => { //code
block

println! ("You

win!");

Sponsored by Readability-Score.com
Measure your website readability!
https://readability-score.com

http://www.cheatography.com/
http://www.cheatography.com/seannarr/
http://www.cheatography.com/seannarr/cheat-sheets/draft-rust-book-notes-not-a
https://sh.rustup.rs
http://www.cheatography.com/seannarr/
https://readability-score.com

Cheatography

}

//similar to switch case? but

concise !

Integer Types

Length Signed Unsigned
8-bit i8 us

16-bit i16 ui6
32-bit i32 u32
64-bit i64 u64

arch isize usize

arch 32/64 bit system - isize =i32/64,

usize=u32/u64
Signed -@2n-1)yto2n-1-1
Unsigned 0 to 20-1
arch (useful in indexing collections)
type suffix 57u8

visual separator 1.000

default type is u32 even on 64bit arch

Functions fn

snake case - lowercase words fn

separated by (_) underscore one_two ()

{1

By seannarr

cheatography.com/seannarr/

parameters: fn foo_bar(x: 132,

name : type y:u32) { }

statement vs expression

statement ends with ; and does not evaluate to
a value;

expression doesn't end with ; and evaluates to
a value

code block let v = { let x = 3;

expression {} x + 1 1} value of y will be
x+1is 4

expression

which is

returned

Error: expected let a = (let b =2);
expression,
found statement

(let)

functions with fn five() -> i32 { 5

return value -> }; 5is expression as no

type colon, and return value as
it's last expression

fn ; turns into statement, and
plus_one (x: empty tuple () will returned,
will be a compiler error as ()

is not i32

i32) -> i32

{ x+1; 1}

Published 25th May, 2018.
Last updated 26th May, 2018.
Page 2 of 14.

Draft - Rust Book Notes - Not a Cheat Sheet
by seannarr via cheatography.com/61019/cs/15819/

enums - methods

enum Message {
Quit,
Move { x: 132, y: 132 1},
Write(String),
ChangeColor (i32, i32, i32),
}
impl Message {
fn call (&self) {
// method body would be
defined here
}
}
let m =
Message: :Write(String::from("hello"
));

m.call();

options<T> alternate Null implementation

enum Option<T> {

Some (T) ,

None,
}
let some_number = Some (5) ;
let some_string = Some ("a
string") ;

let absent_number: Option<i32> =
None;

//error

let x: i8 = 5;

let y: Option<i8> = Some(5) ;

let sum = x + y; //error as x and y
are two different types

error [E0277] : the trait bound i8:
std::ops::Add<std::option::Option<i

8>> is not satisfied

Sponsored by Readability-Score.com
Measure your website readability!
https://readability-score.com

http://www.cheatography.com/
http://www.cheatography.com/seannarr/
http://www.cheatography.com/seannarr/cheat-sheets/draft-rust-book-notes-not-a
http://www.cheatography.com/seannarr/
https://readability-score.com

Cheatography

m placeholder

let some_u8_value = 0u8;
match some_u8_value {

1 => println! ("one"),

3 => println! ("three"),
5 => println! ("five"),
7 => println! ("seven"),

_ => (), unit value

Control flow - if { } else if { } else { }

I

if number == 3 { } arm

condition should or mismatched types error

evaluate to bool
type

if condition { } else blocks of code called
if condition { } else
{}
leta=ifa==3{2
} else { 5}

arms

expressions in all arms
should evaluate to same

type

match handling Result

let guess: u32 = match
guess.trim() .parse() {
Ok (num)

=> num, //Ok receives

num from return Result, which is
returned by match
Err (_) /] _

underscore catches all values

i

=> continue,

By seannarr

cheatography.com/seannarr/

No argument indices.. just simple brace {}

println!("x = {} and yv = {}", x,

Control flows - while and for

I S

while number != 3 { number =

number +1; }

let a =[1,2]; for element in

a.iter() {1}

for number in alternate

(1..4) .rev() { approach to while

My first reactionto ~ WOW!
the concept of

Ownership

Value has a Owner
variable

When owner goes Value is dropped

out of scope

variable let sl =

assignment, String::from("hell

Passing to as let 82 =

o"); sl;
function parameter . . .
. s1is no longer valid. It is
or returning from .
o moved. Only s2 is the
function, it is
owner

moved.

error[E0382]: use of moved value: s1

Reference doesn't ~ when it goes out of

have ownership scope, nothing happens.

Pass by reference it is not moved. It's just

borrowed.

References are immutable by default

Draft - Rust Book Notes - Not a Cheat Sheet
by seannarr via cheatography.com/61019/cs/15819/

Ownership (cont)

Mutable
References

fn main() {

let mut s =
String::from("hello") ;
change (&mut s); }

fn change (some_string:
&mut String) {
some_string.push_str (",

world"); 1}

Memory is managed through a system of
ownership with a set of rules that the compiler
checks at compile time. At compile timel!!

Cargo

cargo --version

cargo new hello_cargo --bin creates

Cargo.toml and main.rs
--bin=bin(ary) or library.

source control: default git --vcs=

Cargo is Rust’s build system and package
manager.

[package]

name = "hello_cargo" #name of the
executable

version = "0.1.0" #version
authors = ["Your Name

<you@example.com>"] #Cargo gets
name and email from the
environment

[dependencies] #packages aka crates

TOML: Tom’s Obvious, Minimal Language

Published 25th May, 2018.
Last updated 26th May, 2018.
Page 3 of 14.

Sponsored by Readability-Score.com
Measure your website readability!
https://readability-score.com

http://www.cheatography.com/
http://www.cheatography.com/seannarr/
http://www.cheatography.com/seannarr/cheat-sheets/draft-rust-book-notes-not-a
http://www.cheatography.com/seannarr/
https://readability-score.com

Cheatography

import crate toml

[dependencies]

rand = "0.3.14" # SimVer ~
A0.3.14 any version that is

compatible with 0.3.14

Adding crates to toml file.

cargo build , cargo run , cargo check

cargo build # creates an executable

file in target/debug/hello_cargo
cargo run # build and run

cargo check #compilation check, no

building executable

cargo build --release

error[E0308]: mismatched types

error [E0308] : ==

mismatched types

src/main.rs:23:21

match
guess.cmp (&secret_number)
AMANAN expected
struct std::string::String, found
integral variable
= note: expected type
&std::string::String

= note: found type &{integer}

cargo.lock

Cargo maintains versions in cargo.lock file

cargo update

cargo updates all versions upto next symver

By seannarr

cheatography.com/seannarr/

registry

Cargo fetches external dependencies and their
dependencies from registry, a copy from the
crates.io.

crates.io is a public repo

loop {}

break; exits the loop

cargo test

#[cfg(test)]

mod tests {
#ltest] --> test

fn it works () {

assert_eq! (2 + 2, 4);

Doc-tests adder documentation tests? to have
examples

assert! false value, assetseq! == assertive! |=

[should_panic] to expect panic!

[ignore]

cargo test -- --test-threads=1 stop parallel run

cargo test --nocapture , no print output

cargo test add //runs tests containing add

tests organization

#[cfg(test)] mod compile only cfg

tests { } is test

tests folder integration tests

Draft - Rust Book Notes - Not a Cheat Sheet
by seannarr via cheatography.com/61019/cs/15819/

struct User {

username: String, field => name
:type
email: String,
sign_in_count: u64,
active: bool,
}
// Instantiating
let userl = User { //struct name

email:
String: :from("someone@example.com")
, //and
username:
String::from("someusernamel23"),
active: true,
sign_in_count: 1,
i
//dot notation
let mut user2 = User { };
user2.email =

String: :from("someone@example.com")

7

unit-like structs without fileds () .. Used to
implement traits with out data on the type.

ownership - lifetimes?

Comments

I **
i

Published 25th May, 2018.
Last updated 26th May, 2018.
Page 4 of 14.

struct Color(i32, 132, i32);
struct Point (132, 132, i32);
let black = Color (0, 0, 0);

let origin = Point (0, 0, 0);

Sponsored by Readability-Score.com
Measure your website readability!
https://readability-score.com

http://www.cheatography.com/
http://www.cheatography.com/seannarr/
http://www.cheatography.com/seannarr/cheat-sheets/draft-rust-book-notes-not-a
http://www.cheatography.com/seannarr/
https://readability-score.com

Cheatography

struct - instantiating options

// .. shorthand
let user2 = User {
email:

String: :from("another@example.com")
username:

String::from("anotherusername567") ,
..userl // remaining fields

should be from userl instance

}i

// shorthand - when variables and

fields have same names

let email ="";

let user2 = User {

email //shortHand

struct methods

I

struct Rectangle {
width: u32,
height: u32,
}
impl Rectangle {
fn area(&self) -> u32 { //first
parameter should be self , instance
of the struct
self.width * self.height
}
fn square(size: u32) ->
Rectangle { //associated function
Rectangle: :square
Rectangle { width: size,

height:
}

size }

&mut self to modify struct

By seannarr

cheatography.com/seannarr/

struct #[derive(Debug)]

printin!("rect1 is {}", rect1);

error[E0277]: the trait boundRectangle:
std::fmt: :Display is not satisfied
{:?} ? to use Debug Trait

[derive (Debug)]
struct Rectangle {
width:

}

u32, height: u32

{:#7?} to pretty print

Derived Traits

struct as expression

fn build_user (email: String,

username: String) -> User {
User {
email: email,
username: username,
active: true,

sign_in_count: 1,

Draft - Rust Book Notes - Not a Cheat Sheet
by seannarr via cheatography.com/61019/cs/15819/

module - referencing a submodule

mod client; => mod client {
//client.rs contents here }
mod network {

//snippet

}

//contents of clents.rs

fn connect { // No need to add mod

declaration

modules-tree

I

communicator
— client
L— network
L— server
L src
— client.rs
b— 1ib.rs // mod client; mod
network;
L— network
f— mod.rs mod server;

L— server.rs

}
}
mod network {
fn connect () {
}
mod client { //nested module

fn connect () {

}

network::client::connect();
network:connect();

Published 25th May, 2018.
Last updated 26th May, 2018.
Page 5 of 14.

modules- rules

L— foo

— bar.rs (contains the
declarations in foo: :bar)

L— mod.rs (contains the
declarations in foo, including mod

bar)

If a module named foo has no submodules, you
should put the declarations for foo in a file
named foo.rs.

If a module named foo does have
submodules, you should put the declarations
for foo in a file named foo/mod.rs.

Sponsored by Readability-Score.com
Measure your website readability!
https://readability-score.com

http://www.cheatography.com/
http://www.cheatography.com/seannarr/
http://www.cheatography.com/seannarr/cheat-sheets/draft-rust-book-notes-not-a
http://www.cheatography.com/seannarr/
https://readability-score.com

Cheatography

pub - privacy rules

If an item is public

it can be accessed through any of its parent
modules

If an item is private

it can be accessed only by its immediate
parent module and any of the parent’s

child modules

bring modules into scope.
pub mod a {
pub mod series {
pub mod of {
pub fn
nested_modules () {}

}

}

fn main() {
a::series::of::nested _modules ()

}

use a::series::of;

fn main() {

of: :nested_modules () ;

In use statement, paths are relative to the crate
root by default

super:: confusing? if the module privacy rules
state that parent and its immediate children of
the parent can access private items, then why
we need Super?

By seannarr

cheatography.com/seannarr/

Only one mutable reference in a
particular scope. Prevents datarace
let mut s = String::from("hello");
let rl = &mut s;

let r2 = &mut s; // error[E0499]:
cannot borrow s as mutable more
than once at a time

Combination of mutable and
immutable references are not
allowed. to guarantee
immutability.

let mut s = String::from("hello");
let rl = &s; // no problem

let r2 = &s; // no problem

let r3 = &mut s; // error[E0502]:
cannot borrow s as mutable because

it is also borrowed as immutable

One mutable reference restriction prevents
data race.

Only All Readers or just One Writer are
allowed.

Draft - Rust Book Notes - Not a Cheat Sheet
by seannarr via cheatography.com/61019/cs/15819/

fn main() {
let mut s =
String::from("hello world") ;
let word = first_word(&s) ;
s.clear(); // Error!
}
fn first_word(s: &String) -> &str
//immutable {
let bytes = s.as_bytes();
for (i, &item) in
bytes.iter () .enumerate() {
if item == b' ' {
return &s[0..i];

//borrowed as immutable

Dangling References

fn main() {

let reference_to_nothing =

dangle() ;
}
fn dangle() -> &String {

let s =
String::from("hello") ;

&s // It is returning
reference, borrowed value..
requiring s to be live outside this
scope

} //Compiler check

error[E0502]: cannot borrow s as mutable
because it is also borrowed as immutable.
Slicing : [..1] to start at 0, [2..] to the end.

enum IpAddrKind {
v4,
V6,
}
struct IpAddr {
kind: IpAddrKind, // type
address: String,
}
let home = IpAddr {

kind: IpAddrKind::V4,

error[E0106]: missing lifetime specifier

= help: this function's return type contains a
borrowed value, but there is

no value for it to be borrowed from

= help: consider giving it a 'static lifetime

Published 25th May, 2018.
Last updated 26th May, 2018.
Page 6 of 14.

Sponsored by Readability-Score.com
Measure your website readability!
https://readability-score.com

http://www.cheatography.com/
http://www.cheatography.com/seannarr/
http://www.cheatography.com/seannarr/cheat-sheets/draft-rust-book-notes-not-a
http://www.cheatography.com/seannarr/
https://readability-score.com

Cheatography

enums (cont)

address:
String::from("127.0.0.1"),
}i
let loopback = IpAddr {
kind: IpAddrKind::V6,

address: String::from("::1"),

enums - variations

I

enum IpAddr {
V4 (u8, u8, u8, ul8),
V6 (String) ,
}
struct Ipv4Addr {
// --snip--
}
struct Ipv6Addr {
// --snip--
}
enum IpAddr {
V4 (Ipv4Addr) ,
V6 (Ipv6Addr) ,
}
enum Message {
Quit,
Move { x: 132, y: 132 1},
Write(String),

ChangeColor (i32, i32, i32),

By seannarr

cheatography.com/seannarr/

Draft - Rust Book Notes - Not a Cheat Sheet
by seannarr via cheatography.com/61019/cs/15819/

enum - bringing some variants into scope match - enum (cont)

enum TrafficLight {
Red,
Yellow,
Green,
}
use TrafficLight::{Red, Yellow};
fn main() {
let red = Red;
let yellow = Yellow;
let green =
TrafficLight: :Green;
}
or

use TrafficLight::*;

glob operator * to bring all items in a
namespace.

X

enum Coin {
Penny,
Nickel,
Dime,
Quarter (UsState) ,
}
fn value_in_cents (coin: Coin) ->
u32 {
match coin {
Coin::Penny => 1,
Coin: :Nickel => 5,

Coin::Dime => 10,

Coin: :Quarter (state) => {

// state value is bind to the

variable

Published 25th May, 2018.
Last updated 26th May, 2018.
Page 7 of 14.

println! ("State quarter
from {:?}!", state);
25

by

let some_u8_value = Some (0u8) ;
match some u8_value {
Some (3) => println! ("three"),
_=> (),
}
or
//if let concise for one pattern
if let Some(3) = some_u8_value {

println! ("three") ;

vectors Vec<T), vec! macro

let v: annotate type when not

Vec<il32> = initialized with data

Vec: :new() ;

let v = vec![1, macro vec! to create

2, 31; instance and hold data

Sponsored by Readability-Score.com
Measure your website readability!
https://readability-score.com

http://www.cheatography.com/
http://www.cheatography.com/seannarr/
http://www.cheatography.com/seannarr/cheat-sheets/draft-rust-book-notes-not-a
http://www.cheatography.com/seannarr/
https://readability-score.com

Draft - Rust Book Notes - Not a Cheat Sheet
by seannarr via cheatography.com/61019/cs/15819/

Vector access elements (cont) _

Cheatography

vectors Vec<T), vec! macro (cont)

let mut v = mut to update the let mut v = vec![1, 2, 3, 4, 5]; str: string literals are stored in
Vec: :new() ; vector. Rush infers the let first = &vI[0]; // immutable the binary program.
v.push(5) ; datatype from push. borrowing format: UTF8
v.push(6) ; v.push(6); //immutable borrow OsString, OsStr, CString, and CStr
) above line, it's error to borrow are string variant libraries.
Inferring datatype from push?
mutable reference again //creating strings
fn function pointer let mut s = String::new();
Vector iterator let s = "initial
Use existing functions in place of

tents".t tri P
let v = vec![100, 32, 571; contents".to_string ()
closure ;
£ { in v { //to_string and from are matter of
fn add_one (x: i32) -> i32 { or 1 1m &V

5 n n 1) . S tyle
_—— println! ("{}", 1i);
} let s = String::from("initial
}
i contents") ;
fn do_twice(f: fn(i32) -> 132, arg: //mutable vector and i to
let hello =

g q dereference using
i32) -> i32 { Serdm ,,from(,,lllllll..),
let mut v = vec![100, 32, 57]; Yes !
f (arg) + £ (arg) : ’ ’ 7

tf-8
} for i in &mut v { //a
g *i += 50;
fn main() {))
} String update and concatenation +/ format!

let answer = do_twice (add_one,
5); let mut s = String::from("foo") ;

EEimtln) (Mhe amgwer igs (50 Vector: enum to store different types s.push_str ("bar"); // foobar append
R 5 o Eomenslibeeteal , 1t takes slice so no ownership
} Int (132), transfer
//return the closure Float (£64), Lo SRSt e el R
fn rotumes clogure() - Text (String) , s.push('l'); //character , lol
Box<Fn (i32) -> 132> { } // concatenation +

Box::new(|x| x + 1) let row = vec! | i e

let s2 = Stri 8 8iE m el ™) p
SpreadsheetCell: :Int(3), et s String el @irezs)

let 83 = g1 + &s2; Not 1 h
SpreadsheetCell: :Text (String::f et s s s LAt as

Vector access elements rom("blue")), been moved here and can no longer

I

be used
let v = vec![1, 2, 3, 4, 5]; SpreadsheetCell::Float (10.12),
1 fn add(self, s: &str) -> String {
let third: &i32 = &v[2]; => access !

// 82 string => str deref coersion
with reference

&s2 => &s2[..]
let third: Option<&i32> = v.get(2);

//more than two string, use
//return None . .

let sl = String::from("tic") ;
let hundredth: &i132 = &v[100];

let s2 = String::from("tac") ;
//panic , use get
//
By seannarr Published 25th May, 2018. Sponsored by Readability-Score.com
cheatography.com/seannarr/ Last updated 26th May, 2018. Measure your website readability!

Page 8 of 14. https://readability-score.com

http://www.cheatography.com/
http://www.cheatography.com/seannarr/
http://www.cheatography.com/seannarr/cheat-sheets/draft-rust-book-notes-not-a
http://www.cheatography.com/seannarr/
https://readability-score.com

Cheatography

String update and concatenation +/ format!

(cont)

let s3 = String::from("toe") ;
let s = format! ("{}-{}-{}", sl, s2,

s3) ;

strings indexing

let sl = String::from("hello"); let

h = s1[0];

error[E0277]: the trait bound
std::string::String:
std::ops::Index<{integer}> is not
satisfied

A String is a wrapper over a Vec<u8>. UTF8, 2
bytes for some characters, 1byte for some

let len = String::from("Hola").len(); => 4

let len = String::from("3ppasctsyiite").len(); =>
24

Error - Recoverable Result, Unrecoverable

panic!

RUST_BACKTRAC stack trace ? (enable

debug symbols)

E=1 cargo run

Err(ref error) if error.kind()
error.kind() ==

ErrorKind::NotFou

nd =>

unwrap error => panic, ok=>

returns value

expect message when error
occurs
let mut f = ? to propagate error. From

File::open (" trait. From::from, error type

hello. txt")?; should implement from

File::open("hello.txt")?.read_to_st

ring (&mut s)?;

By seannarr

cheatography.com/seannarr/

Error - Recoverable Result, Unrecoverable
panic! (cont)

? for return type Result

Stack unwinding -
[profile.release]
panic = 'abort'

Cargo in depth

//Cargo profiles

[profile.dev]

opt-level = 0 //overriding defaults
[profile.releasel

opt-level = 3

//re exporting API

pub use kinds::PrimaryColor;

pub use kinds::SecondaryColor;

pub use utils::mix;

cargo.io login: cargo login
abcdefghijklmnopgrstuvwxyz012345
unique package name to publish and
cargo publish

cargo yank --vers 1.0.1

HashMap<K, V>

use std::collections::HashMap; keys
of the same type and values of the
same type.

let mut scores = HashMap: :new() ;
scores.insert (String::from("Blue"),
10) ;

scores.insert (String::from("Yellow"
), 50);

//creating a hash map from two
vectors

let teams = vec!
[String::from("Blue"),

String::from("Yellow")];

Draft - Rust Book Notes - Not a Cheat Sheet
by seannarr via cheatography.com/61019/cs/15819/

HashMap<K, V> (cont)

let initial_scores = vec! [10, 50];
let scores: HashMap< , _> =
teams.iter () .zip(initial_ scores.ite
r()).collect();

//HashMap to get the desired type
from collect strange way of
specifying return value

v

of Key and Value

_ Rust infers the data types

//access value

let mut scores = HashMap: :new() ;
scores.insert (String::from("Blue"),
10) ;

scores.insert (String::from("Yellow"
), 50);

let team name =
String::from("Blue") ;

let score =

scores.get (&team_name); //get
//iterating

for (key, value) in &scores { }
//To only insert if key doesn't
have a value

scores.entry (String::from("Yellow"
)) .or_insert (50); //returns mutable
reference

// let count =
map.entry (word) .or_insert (0); //to
insert 0, for first time key

insertion

BuildHasher type: default is cryptographically
secure hashing, can be slow

Values are moved, and Hashmap takes the
ownership of keys and values.

Hasmap insert doesn't take the ownership.
insert of a existing key overrides the value

Published 25th May, 2018.
Last updated 26th May, 2018.
Page 9 of 14.

Sponsored by Readability-Score.com
Measure your website readability!
https://readability-score.com

http://www.cheatography.com/
http://www.cheatography.com/seannarr/
http://www.cheatography.com/seannarr/cheat-sheets/draft-rust-book-notes-not-a
http://www.cheatography.com/seannarr/
https://readability-score.com

Cheatography

Generic data types <T>

fn largest<T>(list: &[T]) -> T
struct Point<T> {
sxg v,
y: T,
}
struct Point<T, U> {
sxg I,
y: U,
}
enum Option<T> {
Some (T) ,
None,
}
struct Point<T> {
sxg v,
y: T,
}
impl<T> Point<T> {
fn x(&self) -> &T {

&self.x

}
impl Point<f32> { //specific type

fn distance_ from origin (&self)
-> £32 {

(self.x.powi (2) +

self.y.powi (2)) .sqrt ()

}
}

struct Point<T, U> {

By seannarr

cheatography.com/seannarr/

g m,

y: U,
}
//mixup

impl<T, U> Point<T, U> {

fn mixup<v, W>(self, other:
Point<Vv, W>) -> Point<T, W> {
Point {

x: self.x,

y: other.y,

Monomorphization to specify concrete code at
compile time

pub trait Summary {

fn summarize_author (&self) ->
String;

fn summarize (&self) -> String

format! (" (Read more from

{}...)", self.summarize_author ()
//default can call other methods in
the trait.

}
}
pub struct NewsArticle {

pub headline: String,

pub location: String,

pub author: String,

Draft - Rust Book Notes - Not a Cheat Sheet
by seannarr via cheatography.com/61019/cs/15819/

Generic data types <T> (cont) trait (cont)

pub content: String,
}
impl Summary for NewsArticle {
-> String

fn summarize (&self)

format! ("{}, by {} ({})",
self.headline, self.author,
self.location)
}
}
pub struct Tweet {
pub username: String,
pub content: String,
pub reply: bool,
pub retweet: bool,
}
impl Summary for Tweet { //for
fn summarize (&self) -> String
format! ("{}: {}",
self.username, self.content)
}
}
//default implementation
fn summarize (&self) -> String {
String::from (" (Read
more...)")
}
//to use default implementation,

impl Summary for NewsArticle {}

//empty block

Published 25th May, 2018.
Last updated 26th May, 2018.
Page 10 of 14.

we can implement a trait on a type only if either
the trait or the type is local to your crate.
coherence/orphan rule:people’s code can’'t
break your code and vice versa

Sponsored by Readability-Score.com
Measure your website readability!
https://readability-score.com

http://www.cheatography.com/
http://www.cheatography.com/seannarr/
http://www.cheatography.com/seannarr/cheat-sheets/draft-rust-book-notes-not-a
http://www.cheatography.com/seannarr/
https://readability-score.com

Cheatography

Generic constraints

/] +

fn some_function<T: Display +
Clone, U: Clone + Debug>(t: T, u:
U) -> i32 {

//where clause: with mutilple
trait bounds

fn some_function<T, U>(t: T, u: U)
-> 132

where T: Display + Clone,

U: Clone + Debug

times (cont)

//lifetime annotations with

generics -- means all x, y are has
the same lifetime
fn longest<'a>(x:

&'a str, y: &'a

str) -> &'a str {

if x.len() > y.len() {
x

} else {

Y

Conditionally implement on bounds: impl<T:
Display + PartialOrd> Pair<T> {

{

let r;

{
let x = 5;
r = &X;

}
println! ("r: {}", r);
}
error [E0597] : x does not live
long enough
fn longest (x: &str, y: &str) ->
&str {
if x.len() > y.len() {
b'q
} else {

Y

}
error [E0106] : missing lifetime

specifier

By seannarr

cheatography.com/seannarr/

smaller lifetime is chosen.
static - let s: &'static str = "l have a static
lifetime.";

trait Iterator {

type Item;

fn next (&mut self) ->
Option<Self::Item>;

// methods with default
implementations elided

}

1.The iter method produces an iterator over
immutable references.

2. into_iter to take over ownership of the
parent and returns owned values

3. iter_mut - iterate over mutable references
4. consuming adaptors -> uses up iterator
such as sum()

5. chain of iterator adaptors following a
consumer adaptor gets you the results (ex:
collect())

6.

Published 25th May, 2018.
Last updated 26th May, 2018.
Page 11 of 14.

Draft - Rust Book Notes - Not a Cheat Sheet
by seannarr via cheatography.com/61019/cs/15819/

Box<T>, RC<T>, RefCell<T>

RC<T> Box<T> RefCell<T>
multiple Single Single Data
Ownership
immutable immutable immutable Borrowing
or or
mutable mutable
compile compile runtime checked
time time at

Because RefCell<T> allows mutable borrows
checked at runtime, we can mutate the value
inside the RefCell<T> even when the RefCell<T>
is immutable

lety = &mut x;? let mut y = x; confusion?

let handle = std::thread::spawn (|| {
//spawn new thread
for i in 1..10 {
println! ("hi number {}
from the spawned thread!", 1i);
std::thread::sleep(std::t
ime: :Duration::from millis (1)) ;
}
})

handle.join () .unwrap(); //wait to
finish
let v = vec![1, 2, 3];

let handle = thread::spawn (move

|| { => to let capture take the
ownership

println! ("Here's a vector:
{:21", v);

)i

Sponsored by Readability-Score.com
Measure your website readability!
https://readability-score.com

http://www.cheatography.com/
http://www.cheatography.com/seannarr/
http://www.cheatography.com/seannarr/cheat-sheets/draft-rust-book-notes-not-a
http://www.cheatography.com/seannarr/
https://readability-score.com

Cheatography

threads (cont)

error [E0373] closure may outlive

the current function, but it
borrows v,
which is owned by the current

function
after move drop(v) A error value

used here after move

JoinHandle is an owned value ?

threads - channel mpsc (cont)

tx.send (val) .unwrap () ; //sen
d takes the ownership of wval
})
let tx1 =
:clone(&tx); //clone a

mpsc: : Sender:

transmitter

mpsc : multiple producer, single consumer =>
multiple senders and one receiver

Closures - Environment capture - Traits

Taking as it takes ownership of variables it
ownership uses from the environment,
FnOnce closure can be called once
Borrowing It borrows mutably, so it can
mutably change the environment

FnMut

Borrowing immutably "Fn"

Can FnMut be called multiple times? (which
tries borrow mutably in every call) Yes, as call
finishes, the variables are available for
borrowing.

let equal_to_x = move |z| z == x; to move the
ownership of x to the closure.

threads - channel mpsc

I
I

use std::sync::mpsc;
let (tx, rx) = mpsc::channel(); tx:
transmitter, rx: receiver
thread: :spawn (move || {
let val =
String::from("hi") ;

By seannarr

cheatography.com/seannarr/

Mutex<T> , Arc<T>

let counter =
Arc::new (Mutex: :new(0)) ;
let mut handles = vec![];

for _ in 0..10 {
let counter =
Arc::clone (&counter); //clone
let handle =
thread: :spawn (move || {
let mut num =
counter.lock () .unwrap() ;
*num += 1;

1)
handles.push (handle) ;

Sync and Send

concurrency is part of the standard library not
the language.

two concurrency concepts embedded in the
language: the std::marker traits Sync and Send

Published 25th May, 2018.
Last updated 26th May, 2018.
Page 12 of 14.

Draft - Rust Book Notes - Not a Cheat Sheet
by seannarr via cheatography.com/61019/cs/15819/

Sync and Send (cont)

The Send marker trait
indicates that ownership of
the type implementing Send
can be transferred between

except Re<T>
multiple
references but
can't be shared

threads between threads

The Sync marker trait indicates that it is safe
for the type implementing Sync to be
referenced from multiple threads

In other words, any type T is Sync if &T (a
reference to T) is Send, meaning the reference
can be sent safely to another thread

let expensive closure = |num: u32|
-> u32 {
println! ("calculating
slowly...");
thread: :sleep (Duration::fr

om_secs (2)) ;
num

}i
// type inference
let example_closure = [|x| x;
let s =
example_closure (String::from("hello
"));
let n = example closure(5); //error
type inference only one type
// memoization or lazy
evaluations
impl<T> Cacher<T>

where T: Fn(u32) -> u32

fn new(calculation: T) ->

Cacher<T> {

Sponsored by Readability-Score.com
Measure your website readability!
https://readability-score.com

http://www.cheatography.com/
http://www.cheatography.com/seannarr/
http://www.cheatography.com/seannarr/cheat-sheets/draft-rust-book-notes-not-a
http://www.cheatography.com/seannarr/
https://readability-score.com

Cheatography

closures (cont)

Cacher {
calculation,
value: None,

}

fn value (&mut self, arg: u32) -
> u32 {
match self.value {
Some (v) => v,
None => {
let v =
(self.calculation) (arg) ;
self.value =

Some (V) ;

}
let mut expensive_result =
Cacher: :new (|num| {

println! ("calculating
slowly...");

thread: :sleep (Duration::fr

om_secs (2)) ;

num
1917
//memoization
Implementing unsafe trait Foo {
unsafe trait }

unsafe impl Foo for

i32 {}

mutating static is unsafe

By seannarr

cheatography.com/seannarr/

unsafe (cont)

extern "C" { } call in unsafe block
Foreign Function

Interface (FFI)

C : application extern "C" { fn
binary interface abs (input: i32) ->
(ABI)

i32; 1}

Calling Rust from # [no_mangle]

other languages pub extern "C" fn
call_from_c() {
println! ("Just
called a Rust

function from C!");

}

unsafe block to call unsafe functions

1. Dereference a raw pointer

2. Call an unsafe function or method

3. Access or modify a mutable static variable
4. Implement an unsafe trait

Raw pointers

Different from references and smart
pointers, keep in mind that raw
pointers:

1. Are allowed to ignore the
borrowing rules and have both
immutable and mutable pointers, or
multiple mutable pointers to the
same location

2. Aren’t guaranteed to point to
valid memory

3. Are allowed to be null

4. Don’t implement any automatic
clean-up

let mut num = 5;

let rl = &num as *const i32;

Published 25th May, 2018.
Last updated 26th May, 2018.
Page 13 of 14.

Draft - Rust Book Notes - Not a Cheat Sheet
by seannarr via cheatography.com/61019/cs/15819/

Raw pointers (cont)

let r2 = &mut num as *mut i32;
unsafe { //dereferencing
{hn
{hn

println! ("rl is: *rl) ;

println! ("r2 is: *r2) ;

}

const 132 and mut 132 raw pointers
that both pointed to the same
memory location, that of num. If
instead we’d tried to create an
immutable and a mutable reference
to num, this would not have
compiled because Rust’s ownership
rules don’t allow a mutable
reference at the same time as any
immutable references. With raw
pointers, can create mutable
pointer and an immutable pointer to
the same location, and change data
through the mutable pointer,

potentially creating a data race.

Lifetimes adv

In our definition of Parser, in
order to say that 's (the lifetime
of the string slice) is guaranteed
to live at least as long as 'c (the
lifetime of the reference to
Context), we change the lifetime
declarations to look like this:
o> |

struct Parser<'c, 's:

context: &'c Context<'s>,

}

// lifetime bounds on references to
Generic Types
struct StaticRef<T: 'static>
(&'static T);
struct Ref<'a, T: 'a>(&'a T);

//Inference of Tait life times

Sponsored by Readability-Score.com
Measure your website readability!
https://readability-score.com

http://www.cheatography.com/
http://www.cheatography.com/seannarr/
http://www.cheatography.com/seannarr/cheat-sheets/draft-rust-book-notes-not-a
http://www.cheatography.com/seannarr/
https://readability-score.com

Cheatography

Lifetimes adv (cont)

The default lifetime of a trait
object is 'static.
With &'a Trait or &'a mut Trait,
the default lifetime is 'a.
With a single T: 'a clause, the
default lifetime is 'a.
With multiple T: 'a-like clauses,
there is no default; we must be
explicit.
Box<Red + 'a> or Box<Red +
'static>

Just as with the other bounds,
this means that any implementor of
the Red trait that has references
inside must have the same lifetime
specified in the trait object

bounds as those references

Advanced Traits

pub trait Iterator {
type Item; // place holder
fn next (&mut self) ->
Option<Self::Item>;
}
//With Generic, needs to annotate
the type
//Default generic type
trait Add<RHS=Self> { // RHS is
self type a = a + a
type Output;
fn add(self, rhs: RHS) ->
Self::Output;
}
fn main() {
let person = Human;
Pilot::fly(&person); //quality
to avoid ambiguity

Wizard::fly (&person) ;

By seannarr

cheatography.com/seannarr/

Advanced Traits (cont)

person.fly () ;
}
Assosciated functions:
//As no self, it can infer
<Dog as Animal>::baby_name ()
//NewType
use tuple to creat traits on

external types

Draft - Rust Book Notes - Not a Cheat Sheet
by seannarr via cheatography.com/61019/cs/15819/

iterating over string - bytes() and chars()

(cont)

}

224

164

/1 =-gmip-=-=
165

Implemented directly on the type has
precedence over trait impls

Advanced Types

type Kilometers = i32; Type aliases

let f: Box<Fn() + Send + 'static> = Box::new(]|
printin!("hi"));

type Thunk = Box<Fn() + Send + 'static>;
type Result<T> = Result<T, std::io::Error>;

I never type = void

iterating over string - bytes() and chars()

for ¢ in .chars () {

println! ("{}", c);

H B B B B EH —
|

for b in ".......".bytes() {

println! ("{}", b);

Cargo workspaces

[y
w
U1

[workspace]

members = [
"adder",

]

F—— Cargo.lock

F—— Cargo. toml

— add-one

| — cargo.toml

[dependencies]

add-one = { path = "../add-one" }
-- explicit

cargo run -p adder //to run
cargo install $HOME/.cargo/bin

cargo-something => cargo something

Published 25th May, 2018.
Last updated 26th May, 2018.
Page 14 of 14.

workspaces: all related crates share Cargo.lock
and output directory.

dependencies should be added to cargo.toml
files to extern crate

Sponsored by Readability-Score.com
Measure your website readability!
https://readability-score.com

http://www.cheatography.com/
http://www.cheatography.com/seannarr/
http://www.cheatography.com/seannarr/cheat-sheets/draft-rust-book-notes-not-a
http://www.cheatography.com/seannarr/
https://readability-score.com

	Draft - Rust Book Notes - Not a Cheat Sheet - Page 1
	Instal­lation
	Math Operators
	bool
	Hello World
	Import external crate (library)
	Character Type
	create variables with let
	Tuple Type
	&mut and stdin() and io::Result
	Array Types
	const
	match => arms; arm : pattern => code
	Floati­ng-­Point Types
	Prelude

	Draft - Rust Book Notes - Not a Cheat Sheet - Page 2
	enums - methods
	Integer Types
	option­s<T> alternate Null implem­ent­ation
	Functions fn

	Draft - Rust Book Notes - Not a Cheat Sheet - Page 3
	match - _ placeh­older
	println!
	Control flows - while and for
	Control flow - if { } else if { } else { }
	Cargo
	Ownership
	match handling Result
	Cargo.toml

	Draft - Rust Book Notes - Not a Cheat Sheet - Page 4
	import crate toml
	registry
	struct
	loop
	cargo build , cargo run , cargo check
	cargo test
	error[­E0308]: mismatched types
	tests organi­zation
	Comments
	cargo.lock
	tuple structs
	cargo update

	Draft - Rust Book Notes - Not a Cheat Sheet - Page 5
	struct - instan­tiating options
	struct #[deri­ve(­Debug)]
	module - refere­ncing a submodule
	module­s-tree
	struct as expression
	struct methods
	modules
	modules- rules

	Draft - Rust Book Notes - Not a Cheat Sheet - Page 6
	pub - privacy rules
	Ownership - References Rules
	Slices
	use
	Dangling References
	enums

	Draft - Rust Book Notes - Not a Cheat Sheet - Page 7
	enum - bringing some variants into scope
	if let
	enums - variations
	match - enum
	vectors Vec<T>, vec! macro

	Draft - Rust Book Notes - Not a Cheat Sheet - Page 8
	String, str
	fn function pointer
	Vector iterator
	String update and concat­enation +/ format!
	Vector: enum to store different types
	Vector access elements

	Draft - Rust Book Notes - Not a Cheat Sheet - Page 9
	strings indexing
	Cargo in depth
	Error - Recove­rable Result, Unreco­verable panic!
	HashMa­p<K, V>

	Draft - Rust Book Notes - Not a Cheat Sheet - Page 10
	Generic data types <T>
	trait

	Draft - Rust Book Notes - Not a Cheat Sheet - Page 11
	Generic constr­aints
	Box<T>, RC<­T>, RefCel­l<T>
	threads
	lifetimes
	Iterator

	Draft - Rust Book Notes - Not a Cheat Sheet - Page 12
	Mutex<­T> , Arc<T>
	Closures - Enviro­nment capture - Traits
	closures
	threads - channel mpsc
	Sync and Send

	Draft - Rust Book Notes - Not a Cheat Sheet - Page 13
	Raw pointers
	Lifetimes adv
	unsafe

	Draft - Rust Book Notes - Not a Cheat Sheet - Page 14
	Cargo workspaces
	Advanced Types
	Advanced Traits
	iterating over string - bytes() and chars()

