
Kotlin Cheat Sheet
by scottstoll2017 (ScottHOC) via cheatography.com/45425/cs/13463/

General Tips

Types are capita ​lized You do NOT need ; at the end of lines. Java uses " ​swi ​tch ​", Kotlin uses " ​whe ​n".

Kotlin reads like English. When you see this: Think this: Example:

: "Is type" var age : Int = 10

-> " ​ret ​urn ​s" when (x) is 12 -> "It's a dozen"

Packages and Imports are best understood by reading the info here: Packages and Imports

Variables

var is a Variable that
can be changed.

val is a Value that never changes, like your name.

val a: Int = 1 a is initia ​lized and it's type is specified.

var b = 2 b is initia ​lized and it's type is inf ​err ​ed. (You do not need to specify type when you declare unless the compiler
guesses wrong. Normally the compiler is very good at inferring the type.)

var c : Int c isn't initia ​lized so it's type must be specified. This can lead to nulls which are evil JuJu in Kotlin. (Bad Dev, no
coffee for you.)

var d : String? = " ​Nul ​‐
lab ​le"

The '?' means this is specified with a null ​able string. (You are forcing the compiler to allow a null value... why?? Don't
do this unless you have a compelling reason.)

var e : String = " ​not ​Nul ​‐
lab ​le"

This is specified with a non-nu ​llable string.

Avoid nulls if at all possible. This is because in Kotlin a great deal of effort has gone into trying to eliminate null pointer exceptions and the null
safety that is one of Kotlin's greatest assets is undermined if you intent ​ionally let things be nullable by using the '?'

Number Types

The usual: Type Bit Width

 Double 64

 Float 32

 Long 64

 Int 32

 Short 16

 Byte 8

Floating Point Notation:

By scottstoll2017 (ScottHOC)
cheatography.com/scotthoc/

Not published yet.
Last updated 14th November, 2017.
Page 1 of 7.

Sponsored by Readable.com
Measure your website readability!
https://readable.com

http://www.cheatography.com/
http://www.cheatography.com/scotthoc/
http://www.cheatography.com/scotthoc/cheat-sheets/kotlin
https://kotlinlang.org/docs/reference/packages.html
http://www.cheatography.com/scotthoc/
https://readable.com

Kotlin Cheat Sheet
by scottstoll2017 (ScottHOC) via cheatography.com/45425/cs/13463/

Number Types (cont)

 Longs are tagged with 'L' 1000L

 Floats are tagged with 'f' or 'F' 1000f
1000F

Literal Constants: Decimal 100
125.5

 Hex 0xFF342

 Binary 0b101101

 Octal Not Supported

Range range = 1..10 Contains all Integers from 1 to 10.

Since Kotlin 1.1 you can make numbers more readable with unders ​cores:
val oneMillion = 1_000_000
val credit ​Car ​dNumber = 1234_5 ​678 ​_90 ​12_ ​3456L
val social ​Sec ​uri ​tyN ​umber = 999_99 ​_9999L
val hexBytes = 0xFF_E ​C_DE_5E
val bytes = 0b1101 ​001 ​0_0 ​110 ​100 ​1_1 ​001 ​010 ​0_1 ​0010010

Visibility Modifiers:

Public can be seen by anyone, "who sees the declaring class".

Inte ​rnal can only be accessed from within the same module / package. (This is great for library authors and should be the standard for Android
apps that have all the code in a single package.)

Prot ​ected is visible inside the class AND subcla ​sses.

Priv ​ate is visible inside the class only.

Note: In an Android app that has all of it's code in one package there is never any reason to have anything be Publ ​ic. Instead, make all of your
declar ​ations Inte ​rnal, Prot ​ected or Priv ​ate.

Comments

// Line Comment /* Block
Comment */

/** KDoc
Comment */

Null Safety

var a : String = null You know better by now. This won't fly.

var a : String? = null The '?' says you want to allow for the possib ​ility of a null. It's not recomm ​ended unless
you have to make an allowance for a null, such as intero ​per ​ability with Java code that
is already written to allow for nulls.

Some things can cause issues, such as checking the
length of a declared but uninit ​ialized array and
assigning it to a non-nu ​llable Int:

var a : Array

var b : Int = a.length

Is a recipe for a crash.

By scottstoll2017 (ScottHOC)
cheatography.com/scotthoc/

Not published yet.
Last updated 14th November, 2017.
Page 2 of 7.

Sponsored by Readable.com
Measure your website readability!
https://readable.com

http://www.cheatography.com/
http://www.cheatography.com/scotthoc/
http://www.cheatography.com/scotthoc/cheat-sheets/kotlin
http://www.cheatography.com/scotthoc/
https://readable.com

Kotlin Cheat Sheet
by scottstoll2017 (ScottHOC) via cheatography.com/45425/cs/13463/

Null Safety (cont)

Checking for a null first prevents
us from shooting ourselves in
the foot. We have a few ways to
do it.

Using an If:
if(a != null) a.length else -1

Single line if's are easier than the classic if which would read:
if(a != null){

 return a.length

 } else {

 return -1

}

 Safe Calls. " ​Verify that this isn't a null before doing anything."
a?.length

In context, this declar ​ation says that length ​OfArray is not allowed to be null but then the code uses a Safe
Call (?) to check the length of an array that wasn't initialized:
var a : Array

lengthOfArray : Int = a?.length

Trying to assign a nullable to a
non-nu ​llable causes your
computer to leak magic smoke.

var a =5

var b? : Int = 10

a = b

//No good. Can't do that even though neither one is null because 'a' is non-nu ​llable but 'b' is nullable. This is
because 'b' could potent ​ially be null and 'a' cannot, so this won't fly even though a value was assigned.
*Think of Int and Int? as two different types and you need to cast an Int to an Int?, because you do.

And we all know that assigning a
non-nu ​llable value to a nullable
is fine.

var a : Int?

var b = 5

a = b

// We do this all the time

By scottstoll2017 (ScottHOC)
cheatography.com/scotthoc/

Not published yet.
Last updated 14th November, 2017.
Page 3 of 7.

Sponsored by Readable.com
Measure your website readability!
https://readable.com

http://www.cheatography.com/
http://www.cheatography.com/scotthoc/
http://www.cheatography.com/scotthoc/cheat-sheets/kotlin
http://www.cheatography.com/scotthoc/
https://readable.com

Kotlin Cheat Sheet
by scottstoll2017 (ScottHOC) via cheatography.com/45425/cs/13463/

Flow Control

If, Else If, Else

if (a > b) {

 return a

 } else if (b < c) {

 return b

 } else {

 magicSmokeLeakedOutOfLaptop()

}

When (It's called Switch in Java and C#)

when (x) {

 "Hot Dog" -> print("Mustard")

 true -> lie = false

 42 -> "S ​ecret is that none of the selections are in {} code blocks."

 else -> { tip = "But notice that the else statement

 IS in a code block"}

}

Nested For Loops

fun forRange() {

 ​ ​ ​ ​ // Run 3 Outer Loops
 ​ ​ ​ ​ for (item in 1..3) {
 ​ ​ ​ ​ ​ ​ ​ ​ ​ ​pri ​ntl ​n("Outer loop #$item \n\nThe inner loop is:")

 ​ ​ ​ ​ ​ ​ ​ ​ ​ for (item in 1..10) {
 ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ // in the inner loop, print the even numbers in the range 1..10
 ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ if (item % 2 == 0) {
 ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​pri ​ntl ​n("$item is even.")
 }

 }

 ​ ​ ​ ​ ​ ​ ​ ​ ​ ​pri ​nt(​" ​Inner loop finished.\n\n")
 }

}

http://www.cheatography.com/
http://www.cheatography.com/scotthoc/
http://www.cheatography.com/scotthoc/cheat-sheets/kotlin

For Each

fun forArray() {

 ​ ​ ​ ​ var testArray: Array< ​Str ​ing> = arrayO ​f("F ​irs ​t", " ​Sec ​ond ​", " ​Thi ​rd", " ​Fou ​rth ​", "Fifth")
 ​ ​ ​ ​ // For each thing in the array, print each one.
 ​ ​ ​ ​ for (each in testArray) {
 ​ ​ ​ ​ ​ ​ ​ ​ ​ // Yes, it's this simple
 println(each)

 }

}

Sample While

fun sample ​While() {
 ​ ​ ​ ​ var count = 1

 ​ ​ ​ ​ ​pri ​ntl ​n(" ​\nSample While:")

 ​ ​ ​ ​ ​while (count <= 5) {
 ​ ​ ​ ​ ​ ​ ​ ​ ​ ​pri ​ntl ​n("Count is: $count")

 count++

 }

}

Sample Out of Range While
// A while loop might never execute if it's test fails

fun sample ​Out ​OfR ​ang ​eWh ​ile() {
 ​ ​ ​ ​ var countI ​sTo ​oLarge = 10

 ​ ​ ​ ​ ​pri ​ntl ​n(" ​\nSample Out of Range While (Won't Print)")

 ​ ​ ​ ​ // This will never execute at all because the condition
 ​ ​ ​ ​ // is tested before the code is executed.
 ​ ​ ​ ​ ​while (count ​IsT ​ooLarge <= 5)
 ​ ​ ​ ​ ​ ​ ​ ​ ​ ​pri ​ntl ​n("Count too large count is: $countIsTooLarge")
 countIsTooLarge++

}

Sample Do While
fun sample ​DoW ​hile() {
 ​ ​ ​ ​ var count = 1

 ​ ​ ​ ​ ​pri ​ntl ​n(" ​\nSample Do While")

 ​ ​ ​ ​ do {
 ​ ​ ​ ​ ​ ​ ​ ​ ​ ​pri ​ntl ​n("Do While count is: $count")
 count++

 ​ ​ ​ ​ } while (count <= 5)
}

Sample Out of Range Do While
// A Do While will always exectue at least once because

// it's test isn't performed until after the block executes.

fun sample ​Out ​OfR ​ang ​eDo ​While() {
 ​ ​ ​ ​ var count = 1

 ​ ​ ​ ​ ​pri ​ntl ​n(" ​\nSample Out of Range Do While ​\n(P ​rints once before condition is checked)")

 ​ ​ ​ ​ do {
 ​ ​ ​ ​ ​ ​ ​ ​ ​ ​pri ​ntl ​n("Do While count is: $count")
 count++

 ​ ​ ​ ​ } while (count >= 5)
}

Continue and Break

//Continue:
fun main(args: Array< ​Str ​ing ​>) {

 ​ ​ ​ ​ ​pri ​ntl ​n("Using a not equal test to skip #4:\n")
 useNotEqualToSkip()

 ​ ​ ​ ​ ​pri ​ntl ​n(" ​\nUsing continue to skip when count = 4:\n")
 useContinueToSkip()

 ​ ​ ​ ​ ​pri ​ntl ​n("\nYou should see the exact same output.")

 ​ ​ ​ ​ ​pri ​ntl ​n("\nNow let's use break to skip out after #3:\n")
 useBreakToGetOut()

}

fun useNot ​Equ ​alT ​oSkip() {
 ​ ​ ​ ​ for (count in 1..5) {
 ​ ​ ​ ​ ​ ​ ​ ​ ​ if (count != 4) {
 println(count)

 }

 }

}

fun useCon ​tin ​ueT ​oSkip() {
 ​ ​ ​ ​ for (count in 1..5) {
 ​ ​ ​ ​ ​ ​ ​ ​ ​ if (count == 4) {
 continue

 }

 println(count)

 }

}

//Break
// This code will break you out of the loop after #3
fun useBre ​akT ​oGe ​tOut() {
 ​ ​ ​ ​ for (count in 1..5) {
 ​ ​ ​ ​ ​ ​ ​ ​ ​ if (count == 4) {
 break

 }

 println(count)

 }

}

In short:

continue: Go back to the beginning of the block (the for loop)
break: Break out of the block completely and move on. (Leave the loop.)

For continue there are two examples, one uses a != test to skip over 4 and the other uses an if to check if the count is = 4 and then utilizes a
continue to skip the rest of the code block and just go back to the beginning of the loop.

The break is simple enough. When the break is called you exit the for loop entirely.

By scottstoll2017 (ScottHOC)
cheatography.com/scotthoc/

Not published yet.
Last updated 14th November, 2017.
Page 4 of 7.

Sponsored by Readable.com
Measure your website readability!
https://readable.com

http://www.cheatography.com/scotthoc/
https://readable.com

	Kotlin Cheat Sheet - Page 1
	General Tips
	Variables
	Number Types

	Kotlin Cheat Sheet - Page 2
	Visibility Modifiers:
	Comments
	Null Safety

	Kotlin Cheat Sheet - Page 3
	Kotlin Cheat Sheet - Page 4
	Flow Control
	Continue and Break

