\documentclass[10pt,a4paper]{article} % Packages \usepackage{fancyhdr} % For header and footer \usepackage{multicol} % Allows multicols in tables \usepackage{tabularx} % Intelligent column widths \usepackage{tabulary} % Used in header and footer \usepackage{hhline} % Border under tables \usepackage{graphicx} % For images \usepackage{xcolor} % For hex colours %\usepackage[utf8x]{inputenc} % For unicode character support \usepackage[T1]{fontenc} % Without this we get weird character replacements \usepackage{colortbl} % For coloured tables \usepackage{setspace} % For line height \usepackage{lastpage} % Needed for total page number \usepackage{seqsplit} % Splits long words. %\usepackage{opensans} % Can't make this work so far. Shame. Would be lovely. \usepackage[normalem]{ulem} % For underlining links % Most of the following are not required for the majority % of cheat sheets but are needed for some symbol support. \usepackage{amsmath} % Symbols \usepackage{MnSymbol} % Symbols \usepackage{wasysym} % Symbols %\usepackage[english,german,french,spanish,italian]{babel} % Languages % Document Info \author{MatTheHat (SchwemScribbles)} \pdfinfo{ /Title (ib-chem-option-c-energy-climate-key-concepts.pdf) /Creator (Cheatography) /Author (MatTheHat (SchwemScribbles)) /Subject (IB Chem: Option C-Energy Climate Key Concepts Cheat Sheet) } % Lengths and widths \addtolength{\textwidth}{6cm} \addtolength{\textheight}{-1cm} \addtolength{\hoffset}{-3cm} \addtolength{\voffset}{-2cm} \setlength{\tabcolsep}{0.2cm} % Space between columns \setlength{\headsep}{-12pt} % Reduce space between header and content \setlength{\headheight}{85pt} % If less, LaTeX automatically increases it \renewcommand{\footrulewidth}{0pt} % Remove footer line \renewcommand{\headrulewidth}{0pt} % Remove header line \renewcommand{\seqinsert}{\ifmmode\allowbreak\else\-\fi} % Hyphens in seqsplit % This two commands together give roughly % the right line height in the tables \renewcommand{\arraystretch}{1.3} \onehalfspacing % Commands \newcommand{\SetRowColor}[1]{\noalign{\gdef\RowColorName{#1}}\rowcolor{\RowColorName}} % Shortcut for row colour \newcommand{\mymulticolumn}[3]{\multicolumn{#1}{>{\columncolor{\RowColorName}}#2}{#3}} % For coloured multi-cols \newcolumntype{x}[1]{>{\raggedright}p{#1}} % New column types for ragged-right paragraph columns \newcommand{\tn}{\tabularnewline} % Required as custom column type in use % Font and Colours \definecolor{HeadBackground}{HTML}{333333} \definecolor{FootBackground}{HTML}{666666} \definecolor{TextColor}{HTML}{333333} \definecolor{DarkBackground}{HTML}{38A694} \definecolor{LightBackground}{HTML}{F2F9F8} \renewcommand{\familydefault}{\sfdefault} \color{TextColor} % Header and Footer \pagestyle{fancy} \fancyhead{} % Set header to blank \fancyfoot{} % Set footer to blank \fancyhead[L]{ \noindent \begin{multicols}{3} \begin{tabulary}{5.8cm}{C} \SetRowColor{DarkBackground} \vspace{-7pt} {\parbox{\dimexpr\textwidth-2\fboxsep\relax}{\noindent \hspace*{-6pt}\includegraphics[width=5.8cm]{/web/www.cheatography.com/public/images/cheatography_logo.pdf}} } \end{tabulary} \columnbreak \begin{tabulary}{11cm}{L} \vspace{-2pt}\large{\bf{\textcolor{DarkBackground}{\textrm{IB Chem: Option C-Energy Climate Key Concepts Cheat Sheet}}}} \\ \normalsize{by \textcolor{DarkBackground}{MatTheHat (SchwemScribbles)} via \textcolor{DarkBackground}{\uline{cheatography.com/102350/cs/21207/}}} \end{tabulary} \end{multicols}} \fancyfoot[L]{ \footnotesize \noindent \begin{multicols}{3} \begin{tabulary}{5.8cm}{LL} \SetRowColor{FootBackground} \mymulticolumn{2}{p{5.377cm}}{\bf\textcolor{white}{Cheatographer}} \\ \vspace{-2pt}MatTheHat (SchwemScribbles) \\ \uline{cheatography.com/schwemscribbles} \\ \end{tabulary} \vfill \columnbreak \begin{tabulary}{5.8cm}{L} \SetRowColor{FootBackground} \mymulticolumn{1}{p{5.377cm}}{\bf\textcolor{white}{Cheat Sheet}} \\ \vspace{-2pt}Published 24th November, 2019.\\ Updated 24th November, 2019.\\ Page {\thepage} of \pageref{LastPage}. \end{tabulary} \vfill \columnbreak \begin{tabulary}{5.8cm}{L} \SetRowColor{FootBackground} \mymulticolumn{1}{p{5.377cm}}{\bf\textcolor{white}{Sponsor}} \\ \SetRowColor{white} \vspace{-5pt} %\includegraphics[width=48px,height=48px]{dave.jpeg} Measure your website readability!\\ www.readability-score.com \end{tabulary} \end{multicols}} \begin{document} \raggedright \raggedcolumns % Set font size to small. Switch to any value % from this page to resize cheat sheet text: % www.emerson.emory.edu/services/latex/latex_169.html \footnotesize % Small font. \begin{multicols*}{3} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Climate Models}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{A climate model is a simulation of the factors that could affect Earth's climate.} \tn % Row Count 2 (+ 2) % Row 1 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{It helps us see what might happen to Earth.} \tn % Row Count 3 (+ 1) % Row 2 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{Factors that don't change: elevation, latitude} \tn % Row Count 4 (+ 1) % Row 3 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{Factors that do change: air pollution, volcanic eruptions, etc.} \tn % Row Count 6 (+ 2) % Row 4 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{With a climate model, we can manipulate variables and safely and easily see their effects.} \tn % Row Count 8 (+ 2) % Row 5 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{We know they are accurate because we use info gathered from old trees, ice cores, NASA satellites, and human record-keeping to verify the effects.} \tn % Row Count 11 (+ 3) % Row 6 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{Predictions can suggest how to mitigate the worst effects of climate change and help decision-makers prioritize environmental issues based on scientific evidence.} \tn % Row Count 15 (+ 4) % Row 7 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{Climate models have the ability to advance the way we plan our cities and even influence business opportunites.} \tn % Row Count 18 (+ 3) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{x{2.38896 cm} x{2.58804 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{5.377cm}}{\bf\textcolor{white}{What Happens to the Bonds in Greenhouse Gases?}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{2}{x{5.377cm}}{When the greenhouse gases absorb long wave radiation, the wave's energy causes the bonds to vibrate.} \tn % Row Count 2 (+ 2) % Row 1 \SetRowColor{white} \mymulticolumn{2}{x{5.377cm}}{The bonds will stretch and bend as a result of this energy input.} \tn % Row Count 4 (+ 2) % Row 2 \SetRowColor{LightBackground} \mymulticolumn{2}{x{5.377cm}}{The molecules have a change in dipole moment and may even change their angle temporarily.} \tn % Row Count 6 (+ 2) % Row 3 \SetRowColor{white} \mymulticolumn{2}{x{5.377cm}}{The incoming energy, used to vibrate the bonds, is then released back into the atmosphere over time as a slightly longer IR wavelength than it was when it was absorbed.} \tn % Row Count 10 (+ 4) % Row 4 \SetRowColor{LightBackground} Vibrations of H20: & Vibrations of CO2: \tn % Row Count 11 (+ 1) % Row 5 \SetRowColor{white} asymmetrical stretching (IR active) & asymmetrical stretching (IR active) \tn % Row Count 13 (+ 2) % Row 6 \SetRowColor{LightBackground} symmetrical stretching (IR active) & symmetrical stretching (not IR active) \tn % Row Count 15 (+ 2) % Row 7 \SetRowColor{white} symmetrical bending (IR active) & symmetrical bending (IR active) \tn % Row Count 17 (+ 2) \hhline{>{\arrayrulecolor{DarkBackground}}--} \SetRowColor{LightBackground} \mymulticolumn{2}{x{5.377cm}}{When a molecule is not IR active, it is because there is no change in net molecular dipole.} \tn \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Aerosols}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{Definition: tiny particles in the air that can be produced when we burn different types of fossil fuels.} \tn % Row Count 3 (+ 3) % Row 1 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{Can also be called an {\bf{atmospheric particulate}}.} \tn % Row Count 4 (+ 1) % Row 2 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{In the 80s and 90s the word aerosol was used by the media to refer to the spray cans that released CFCs.} \tn % Row Count 7 (+ 3) % Row 3 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{Most aerosols cool down the Earth. We need them in low levels, just like greenhouse gases.} \tn % Row Count 9 (+ 2) % Row 4 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{Common aerosols include: organic carbon (warming), pure sulfates and nitrates (cooling), and soot (cooling).} \tn % Row Count 12 (+ 3) % Row 5 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{Soot holds onto radiation energy and does not reflect it back, so cooling the global temperatures. In addition, it acts as a shade to UV light entering the atmosphere, cooling the surface.} \tn % Row Count 16 (+ 4) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Carbon Capture}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{Carbon capture involves capturing CO2 at its source (factories, etc.) and transporting it to a suitable location where it is stored underground.} \tn % Row Count 3 (+ 3) % Row 1 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{This prevents it from entering the atmosphere.} \tn % Row Count 4 (+ 1) % Row 2 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{This mimics how nature has stored oil, gas, and CO2 for millions of years.} \tn % Row Count 6 (+ 2) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{The 2018 Paris Agreement}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{The goal was to achieve 0 net carbon pollution by the end of the century.} \tn % Row Count 2 (+ 2) % Row 1 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{In order to do this, we must limit the human practices that create greenhouse gas emissions.} \tn % Row Count 4 (+ 2) % Row 2 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{We can reverse the effect of those practices by reducing the amount of carbon in the atmosphere.} \tn % Row Count 6 (+ 2) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{x{0.91894 cm} x{1.00248 cm} x{1.04425 cm} x{1.21133 cm} } \SetRowColor{DarkBackground} \mymulticolumn{4}{x{5.377cm}}{\bf\textcolor{white}{Bonded Pair Shapes}} \tn % Row 0 \SetRowColor{LightBackground} \# of Bonded Pairs: & Shape Name: & \seqsplit{Angle(s)(in} degrees): & Example: \tn % Row Count 3 (+ 3) % Row 1 \SetRowColor{white} 2 & Linear & 180 & Carbon Dioxide \tn % Row Count 5 (+ 2) % Row 2 \SetRowColor{LightBackground} 3 & Trigonal Planar & 120 & Boron \seqsplit{Trifluoride} \tn % Row Count 7 (+ 2) % Row 3 \SetRowColor{white} 4 & \seqsplit{Tetrahedral} & 109.5 & Methane \tn % Row Count 9 (+ 2) % Row 4 \SetRowColor{LightBackground} 5 & Trigonal \seqsplit{Bipyramidal} & 120, 90, 180 & Phosphorus \seqsplit{Pentachloride} \tn % Row Count 12 (+ 3) % Row 5 \SetRowColor{white} 6 & \seqsplit{Octahedral} & 90, 120 & Sulphur \seqsplit{Hexafluoride} \tn % Row Count 14 (+ 2) \hhline{>{\arrayrulecolor{DarkBackground}}----} \SetRowColor{LightBackground} \mymulticolumn{4}{x{5.377cm}}{These bonded pairs only happen with non-metals forming covalent bonds. \newline If there are lone pairs, they can cause a molecule to become {\bf{bent}}. This means that the bond angle becomes reduced by 2.5 degrees. \newline Polar molecules have lone pairs.} \tn \hhline{>{\arrayrulecolor{DarkBackground}}----} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{The Best Way to Measure Climate Change}} \tn \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{The temperature of the oceans. \newline % Row Count 1 (+ 1) WHY? \newline % Row Count 2 (+ 1) They are less erratic than air temperatures and thus more reliable. It also takes longer for ocean temperature to change than air temperature. \newline % Row Count 5 (+ 3) FINDINGS \newline % Row Count 6 (+ 1) - warming water expands, causing sea levels to rise \newline % Row Count 8 (+ 2) - resulting in more powerful storms and greater downpours, therefore stronger flooding \newline % Row Count 10 (+ 2) - causing a reduction in sea life, a loss of coral reef, and a displacement of people% Row Count 12 (+ 2) } \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Rise in Sea Levels}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{Warmer water expands, causing a rise in the sea levels.} \tn % Row Count 2 (+ 2) % Row 1 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{This results in more powerful storms and greater downpours.} \tn % Row Count 4 (+ 2) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Destruction of Coral Reefs}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{Increasing carbon dioxide in oceans causes carbonic acid to form.} \tn % Row Count 2 (+ 2) % Row 1 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{This increases the acidity of the oceans.} \tn % Row Count 3 (+ 1) % Row 2 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{Resulting in the destruction of coral reefs.} \tn % Row Count 4 (+ 1) % Row 3 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{Which in turn displaces large amounts of marine life.} \tn % Row Count 6 (+ 2) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{x{2.4885 cm} x{2.4885 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{5.377cm}}{\bf\textcolor{white}{UV Radiation}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{2}{x{5.377cm}}{UV light is a wave that forms part of the electromagnetic spectrum. It has a higher frequency and shorter wavelength than visible light.} \tn % Row Count 3 (+ 3) % Row 1 \SetRowColor{white} \mymulticolumn{2}{x{5.377cm}}{SPF: Sun Protection Factor} \tn % Row Count 4 (+ 1) % Row 2 \SetRowColor{LightBackground} \mymulticolumn{2}{x{5.377cm}}{It is measured in how long the sun's radiation would take to redden your skin compared to without sunscreen} \tn % Row Count 7 (+ 3) % Row 3 \SetRowColor{white} \mymulticolumn{2}{x{5.377cm}}{Common ingredients in sunscreen include titanium dioxide and zinc oxide.} \tn % Row Count 9 (+ 2) % Row 4 \SetRowColor{LightBackground} UVA \{\{ac\}\} \{\{br\}\} \{\{bb\}\} & UVB \{\{ac\}\} \{\{bb\}\} \{\{bl\}\} \tn % Row Count 11 (+ 2) % Row 5 \SetRowColor{white} longer wavelength & shorter wavelength \{\{bl\}\} \tn % Row Count 13 (+ 2) % Row 6 \SetRowColor{LightBackground} ages the skin & burns the skin \{\{bl\}\} \tn % Row Count 15 (+ 2) % Row 7 \SetRowColor{white} exposure causes genetic damage to the cells on the innermost part of the top layer of skin & penetrates and damages the outermost layer of your skin \{\{bl\}\} \tn % Row Count 20 (+ 5) % Row 8 \SetRowColor{LightBackground} can penetrate glass & cannot penetrate glass \{\{bl\}\} \tn % Row Count 22 (+ 2) \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{UN 2018 Warnings}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{Without urgent action, global temperatures will rise above 3 degrees celcius by the end of the century} \tn % Row Count 3 (+ 3) % Row 1 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{This will cause entire cities to be swallowed by the ocean and plants and animals will face extinction due to extreme droughts} \tn % Row Count 6 (+ 3) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Increasing Greenhouse Gases \& Their Effect}} \tn \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{In recent years there has been an increase in the amount of greenhouse gases due to human activity such as {\bf{burning fossil fuels, deforestation, and modern farming practices}}. The increase in greenhouse gases absorbs more of the outgoing long wave radiation, which {\bf{slows the release of energy into space}} even more than normal. This increased amount of energy in the atmosphere results in {\bf{an increase in Earth's temperature}}.% Row Count 9 (+ 9) } \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Why do we Need Greenhouse Gases?}} \tn \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{In short, {\bf{to maintain Earth's temperature}}. The Earth's temperature remains reasonably constant because greenhouse gases will absorb some of the long wave radiation (IR radiation) which slows the process of the energy being released into space.% Row Count 5 (+ 5) } \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Is it a Greenhouse Gas?}} \tn \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{Greenhouse gases in the atmosphere can absorb infrared radiation. {\emph{A greenhouse gas must have a polar bond, but doesn't necessarily have to be a polar molecule.}} In order to have a polar bond, there must be a difference in the {\bf{electronegativity}} values between the atoms in the bond. \newline % Row Count 6 (+ 6) {\bf{What is electronegativity?}} \newline % Row Count 7 (+ 1) - A measure of the tendancy of an atom to attract a bonding pair of electrons. \newline % Row Count 9 (+ 2) - The Pauling scale is commonly used \newline % Row Count 10 (+ 1) - e.g. F=4.0, which is the highest electronegativity value% Row Count 12 (+ 2) } \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{What is Climate Change?}} \tn \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{The term climate change is used to describe a long-term change in global temperatures and weather patterns. It describes the effects of global warming that have occurred as a result of human activity following the industrial revolution.% Row Count 5 (+ 5) } \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{x{2.18988 cm} x{2.78712 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{5.377cm}}{\bf\textcolor{white}{The Alcohol Family (CnH2n+1OH)}} \tn % Row 0 \SetRowColor{LightBackground} Methanol & CH3OH \tn % Row Count 1 (+ 1) % Row 1 \SetRowColor{white} Ethanol & CH3Ch2OH \tn % Row Count 2 (+ 1) % Row 2 \SetRowColor{LightBackground} Propan-1-ol & CH3CH2CH2OH \tn % Row Count 3 (+ 1) % Row 3 \SetRowColor{white} Butan-1-ol & CH3CH2Ch2CH2OH \tn % Row Count 4 (+ 1) % Row 4 \SetRowColor{LightBackground} Butan-2-ol & CH3CH2CHOHCH3 \tn % Row Count 5 (+ 1) \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{x{2.18988 cm} x{2.78712 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{5.377cm}}{\bf\textcolor{white}{The Alkane Family (CnH2n+2)}} \tn % Row 0 \SetRowColor{LightBackground} Methane & CH4 (g) \tn % Row Count 1 (+ 1) % Row 1 \SetRowColor{white} Ethane & C2H6 (g) \tn % Row Count 2 (+ 1) % Row 2 \SetRowColor{LightBackground} Propane & C3H8 (g) \tn % Row Count 3 (+ 1) % Row 3 \SetRowColor{white} Butane & C4H10 (g) \tn % Row Count 4 (+ 1) % Row 4 \SetRowColor{LightBackground} Pentane & C5H15 (g) \tn % Row Count 5 (+ 1) % Row 5 \SetRowColor{white} \mymulticolumn{2}{x{5.377cm}}{Hectane} \tn % Row Count 6 (+ 1) % Row 6 \SetRowColor{LightBackground} \mymulticolumn{2}{x{5.377cm}}{Heptane} \tn % Row Count 7 (+ 1) % Row 7 \SetRowColor{white} \mymulticolumn{2}{x{5.377cm}}{Octane} \tn % Row Count 8 (+ 1) % Row 8 \SetRowColor{LightBackground} \mymulticolumn{2}{x{5.377cm}}{Nonane} \tn % Row Count 9 (+ 1) % Row 9 \SetRowColor{white} \mymulticolumn{2}{x{5.377cm}}{Decane} \tn % Row Count 10 (+ 1) \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{IPCC Findings}} \tn \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{The nternational Panel on Climate Change, a UN body of climate scientists found that atmospheric carbon dioxide concentration had risen by 40\% since the industrial revolution, resulting in Earth's 1 degree celcius temperature increase.% Row Count 5 (+ 5) } \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Effects of Increasing CO2 in Oceans}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{Carbonic acid (H2CO3(aq)) forms in the seawater resulting in an increase in acidity of the oceans.} \tn % Row Count 2 (+ 2) % Row 1 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{Calcium carbonate + carbonic acid -\textgreater{} calcium hydrogen carbonate + carbon dioxide + water} \tn % Row Count 4 (+ 2) % Row 2 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{CaCO3 (s) + H2CO3 (aq) -\textgreater{} CaHCO3 (s) + CO2 (g) + H20 (l)} \tn % Row Count 6 (+ 2) % Row 3 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{{\bf{Effects of Increasing Carbon Dioxide Levels in Water}}} \tn % Row Count 8 (+ 2) % Row 4 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{-rising ocean temperatures} \tn % Row Count 9 (+ 1) % Row 5 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{-makes it hard for shellfish to build the shells they need for protection} \tn % Row Count 11 (+ 2) % Row 6 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{-algae bloom, causing {\emph{eutrophication}}} \tn % Row Count 12 (+ 1) % Row 7 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{-fish lose their sense of smell and are unable to detect predators} \tn % Row Count 14 (+ 2) \hhline{>{\arrayrulecolor{DarkBackground}}-} \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{{\emph{Eutrophication}} - excessive nutrients in a body of water; causes excessive plant growth and death of animal life due to lack of oxygen} \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{What Makes a Greenhouse Gas Effective?}} \tn \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{- Concentrations in the atmosphere (AKA Abundance) \newline % Row Count 2 (+ 2) - Ability to absorb infrared radiation \newline % Row Count 3 (+ 1) These two factors make a greenhouse gas contribute to global warming. However, a gas does not have to have high amounts of both factors to make a large impact. For example, Carbon Dioxide has a very high abundance in the atmosphere, but a low IR absorption ability, and it is still one of of the highest contributors to global warming.% Row Count 10 (+ 7) } \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{x{2.04057 cm} x{2.93643 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{5.377cm}}{\bf\textcolor{white}{Weather vs. Climate}} \tn % Row 0 \SetRowColor{LightBackground} \{\{ac\}\} Weather \{\{bb\}\} \{\{br\}\} & \{\{ac\}\} Climate \{\{bb\}\} \tn % Row Count 2 (+ 2) % Row 1 \SetRowColor{white} occur locally \{\{br\}\} & regionally or globally \tn % Row Count 4 (+ 2) % Row 2 \SetRowColor{LightBackground} short periods of time \{\{br\}\} & over seasons, years, or decades \tn % Row Count 6 (+ 2) % Row 3 \SetRowColor{white} rain, snow, etc.\{\{br\}\} & average of temperature, humidity, and rainfall patters \tn % Row Count 9 (+ 3) \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{How Do CO2 Emissions Change the Global Climate?}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{CO2 emissions may cause the Earth's atmosphere to trap more heat.} \tn % Row Count 2 (+ 2) % Row 1 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{The CO2 molecules absorb long-wave radiation.} \tn % Row Count 3 (+ 1) % Row 2 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{Bonds will vibrate by bending to stretching.} \tn % Row Count 4 (+ 1) % Row 3 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{Change in dipole and change in angle.} \tn % Row Count 5 (+ 1) % Row 4 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{Transmission of long-wave radiation occurs into the atmosphere.} \tn % Row Count 7 (+ 2) % Row 5 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{Thus raising the global temperatures.} \tn % Row Count 8 (+ 1) \hhline{>{\arrayrulecolor{DarkBackground}}-} \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{{\emph{this is the exact structure that my teacher wants, and may not work for everyone}}} \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Naturally Maintaining Earth's Temperature}} \tn \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{The mean average of temperature of the Earth's temperature is regulated by a {\bf{steady state equilibrium}} whihc exists between the energy reaching the Earth from the Sun and the energy being transmitted by the Earth back into space. The incoming radiation is {\bf{shortwave ultraviolet and visible radiation.}} Some is reflected back into space and some is absorbed by the atmosphere before it reaches the surface. \newline % Row Count 9 (+ 9) The energy released back from the Earth's surface is {\bf{infrared radiation}} which is longer in wavelength than UV or visible light. However, this means not all the radiation escapes and hence the Earth's temperature is warm enough to sustain life.% Row Count 14 (+ 5) } \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} % That's all folks \end{multicols*} \end{document}