
Git Cheat Sheet
by schmidt7 via cheatography.com/30462/cs/9075/

Getting started

git clone

ssh:// ​dom ​ain.or ​g/p ​roj ​ect.git`
Get a copy of an extern
project.

git init myProject Creates a local new
project.

git config --global user.name

"Max Muster ​man ​n"
Sets your displayed name
(oblig ​atory).

git config --global user.mail

" ​max ​@mu ​ste ​rma ​nn.d ​e"
Sets your email address
(oblig ​atory).

git config --global --list Verify global settings.

Global config ​uration is saved in the file .gitc ​onfig file in your home

directory. Local config ​uration (git config --local) in each repository

in the file .git/ ​config

Exploring the repository

git status Important command to see the current state
of the local reposi ​tory.

git log Shows the history of the project.

git log --graph

--oneline

Useful option for a larger overview.

git branch Shows the current branch and all local branches
that are available. (-a for all available branches).

git blame $file see who edited the file and when.

gitk graphical tool to explore the history.

git gui graphical tool for git.

Basic commands

git add

$file

Adds $file to the index/ ​staging area

git

commit

Saves all changes that are added to the index/ ​staging area in
a commit ​/sn ​apshot in your local reposi ​tory.

Basic commands (cont)

git

reset

$file

Removes $file from the index/ ​staging area. Useful when the
file was added accide ​ntally.

git

checkout

$file

Restores $file to the state of the latest commit. All local
changes for this file will be deleted.

git

fetch

Gets the most recent version from the remote reposi ​tory.
Changes won't be applied to the working directory. Might be
useful when a conflict with the local version is expected.

git pull Like git fetch, but changes are immedi ​ately applied to the
working directory.

git mv

$name1

$name2

To move a file within Git. Should be used to preserve the
file-h ​istory

git rm

$file ​na

me

Removes the file

Things that might be useful

How to change the editor for commit messages?

git config --global core.e ​dit ​or= ​ed ​ito ​rname

How to learn more about a certain command?

git comma ​nd --help

How to specify a range of commits?

Via two dots. For example: git log 9e45..e312

The SHA1-ID can be found in the history.

What does HEAD^2 mean?

Two commit ​s(s ​nap ​shots) behind HEAD, the current snapsh ​ot- ​poi ​nter.
Note that ^ and ~ are aequiv ​alent and you can combine all notations.

HEAD^1 is equivalent to HEAD~

HEAD^^~2 is equivalent to HEAD~3^

I only made small changes in each line. How can see them directly?

Use git diff $file ​name --word ​-di ​ff= ​color

I want to introduce the same commit that was made in another branch in
my branch

Use git cherry ​-pick $ID

By schmidt7
cheatography.com/schmidt7/

Not published yet.
Last updated 14th September, 2016.
Page 1 of 3.

Sponsored by Readability-Score.com
Measure your website readability!
https://readability-score.com

http://www.cheatography.com/
http://www.cheatography.com/schmidt7/
http://www.cheatography.com/schmidt7/cheat-sheets/git
ssh://domain.org/project.git</code>
http://www.cheatography.com/schmidt7/
https://readability-score.com

Git Cheat Sheet
by schmidt7 via cheatography.com/30462/cs/9075/

Things that might be useful (cont)

I know that there is a bug introduced between two far away versions. Can
git help me to find the commit that introduced the bug?

Yes, read the docume ​ntation for git bisect

$IDs are hard to remember. What can I do?

If you often have to refer to a certain commit ​/sn ​apshot of your project
you can use git tag -a $tagname $ID to give it a name that is

easier to remember. This is especially useful to remember the commit
of a published version (eg. tagname v.0.8)

How to prevent Git from committing certain files?

If the rule should apply to every developer create a file .giti ​gnore
in the repository and write in each line a pattern that should be
excluded. Commit the file.
Example: *.tmp.
To exclude it locally, change the file .git/ ​inf ​o/e ​xclude in your

repository

These 40 character $IDs in the log are too long.

In order to refer to a ID, you only have to provide as many characters
as necessary to be unique in your reposi ​tory. But at least 4 charac ​ters.

Resolving Conflicts

1. Run git status to see the files where the conflict occurs.

2. Open the file that was changed in both branches with your editor.
3. Look for passages that look like

<< ​<<< ​<< HEAD
command1

command2

=======

command3

>> ​>>> ​>> higherbranch

4. Decide how the file should look like. In this example you might want to
have all 3 commands in the merged result or only one of them.
5. Edit the file in a way that the result makes sense. Delete all lines that
were introduced by Git.
6. Save it. Add it to the index via git add $file ​name and run git

status again.
7. Edit all files with conflicts until it says all conflicts are resolved. You can
finish it via git commit

There are also tools available that help you in comparing the different
versions. Use git merget ​ool --tool ​-help to get a list of all

available tools. Run git merget ​ool --tool ​=$ ​too ​lname to use it

for resolving your conflict.

Basic workflow

1. Check if you're in the right branch to work in with git branch.

2. Get the most recent changes from the remote repository with git

pull.

3. Make your changes.
4. Before adding the files with git add $file ​name you might want to

check what changes you made in each file via git diff $file ​name.

5. Use git status to verify if all changed files you want to commit are

added to the index.
6. If you want to check again what changes exactly you're going to
submit, use git diff --cached to see them all.

7. Everything is fine? Use git pull a last time for the case that

someone submitted faster than you.
8. Finally use git commit to open an editor to provide a helpful commit

message that describes your changes.
9. Publish your changes that everybody can see them with git push

Working with branches

git branch

$bran ​chn ​ame

Creates a new branch with the name
$bran ​chname from the current position.

git checkout

$bran ​chn ​ame

Change to branch $bran ​chname

git checkout -b

$bran ​chn ​ame

Creates branch $bran ​chname and switches
directly to it

git merge

$othe ​rbr ​anch

Merges $othe ​rbr ​anch to the current positon

git merge --

abort

Aborts a merge in case of a conflict

git stash Saves your current state

git stash apply Restores the stashed state.

git stash --help More inform ​ation incl. options list, drop, pop

git stash is useful when you want to change your branch (for example

to fix something important) but don't want to commit your current work
already.
When you return use git stash --apply to continue your work

By schmidt7
cheatography.com/schmidt7/

Not published yet.
Last updated 14th September, 2016.
Page 2 of 3.

Sponsored by Readability-Score.com
Measure your website readability!
https://readability-score.com

http://www.cheatography.com/
http://www.cheatography.com/schmidt7/
http://www.cheatography.com/schmidt7/cheat-sheets/git
http://www.cheatography.com/schmidt7/
https://readability-score.com

Git Cheat Sheet
by schmidt7 via cheatography.com/30462/cs/9075/

Working with branches step-b ​y-step

1. List all available branches with git branch -a

2. If you're not in the branch from where you want to start your
develo ​pment, switch to it via git checkout $bran ​chn ​ame

3. You want to work on a issue or a feature concerning this branch?
Create your sub-branch via git checkout -b $your ​bra ​nch ​name.

Please follow naming conven ​tions for $your ​bra ​nch ​name if your team
agreed on any.
4. Do your changes, commit.
5. Option ​ally, if your separate develo ​pment takes a long time, consider to
merge changes from the higher branch from time to time with git merge

$high ​erb ​ranch in order to reduce the number of possible conflicts at

the end. Note that you have to use git pull inside of $high ​erb ​ranch `

before you get the most recent changes.
6. At the end of your develo ​pment merge the changes that were made in
the meantime from the higher ​-branch as described in step 5.
7. In the case of merge conflicts, solve them. Give attention to the
messages in git status

8. Check again if everything was committed. Test your feature.
9. If you're confident that everything is correct, go to the next higher
branch (where you want to have your develo ​pment included) via git

checkout $high ​erb ​ranch and merge your feature with git merge

$your ​bra ​nch ​name.

10. There shouldn't be any conflicts in the last step. If there are, it means
that someone published changes in the meantime. Use git merge --

abort, switch back to your branch and repeat the steps beginning from 6.

Note: It is not the only way how to work with branches. It is also not the
most elegant way but should be relatively safe with regard to possible
errors.

Undo and rewriting history

How to add an additional file to the last commit or re-edit the commit
message?

If you haven't pushed the commit yet do the following: Add the file you
forgot to the index and use git commit --amend. In the case you

only want to change the message, just type the command without
adding a file to the index.
Alternative: Use git reset --soft HEAD^ . It sets your local

repository back by one commit while leaving the working directory
unchanged. You can start from there to add again files and to commit
again.

Undo and rewriting history (cont)

How to delete my last commit (locally)?

In the case you haven't pushed it yet, you can use: git reset --

hard HEAD^ to reset your local repository and your working directory

to the commit before.
For the case you already published it, use the command git revert

HEAD to create an anti-c ​ommit for the last commit. git revert works

also with older commits. In this case provide the $ID instead of HEAD.

I haven't pushed the last 4 commits yet and I want to change them into
two bigger ones and to adjust the messages. How can I do it?

Use git rebase --inte ​ractive HEAD^4 . Change the letters in

front of the presented commits in the way you want to change them.

I lost something.

Use git reflog. You might be able to restore it. (Checkout to an

earlier reflog entry or cherry ​-pick it again)

Warn ​ing: Only change commit messages or change history in the case
that they are NOT publis ​hed yet (via git push) or you're completely sure
that nobody based his work on it.

Merged subbranch

From the (onlin ​e-)book ProGit (https ​:// ​git ​-sc ​m.c ​om/ ​doc). Example of a
merged issue branch.

By schmidt7
cheatography.com/schmidt7/

Not published yet.
Last updated 14th September, 2016.
Page 3 of 3.

Sponsored by Readability-Score.com
Measure your website readability!
https://readability-score.com

http://www.cheatography.com/
http://www.cheatography.com/schmidt7/
http://www.cheatography.com/schmidt7/cheat-sheets/git
/uploads/schmidt7_1473675057_basic-merging-2.png
http://www.cheatography.com/schmidt7/
https://readability-score.com

	Git Cheat Sheet - Page 1
	Getting started
	Exploring the repository
	Things that might be useful
	Basic commands

	Git Cheat Sheet - Page 2
	Basic workflow
	Working with branches
	Resolving Conflicts

	Git Cheat Sheet - Page 3
	Working with branches step-b­y-step
	Merged subbranch
	Undo and rewriting history

