\documentclass[10pt,a4paper]{article} % Packages \usepackage{fancyhdr} % For header and footer \usepackage{multicol} % Allows multicols in tables \usepackage{tabularx} % Intelligent column widths \usepackage{tabulary} % Used in header and footer \usepackage{hhline} % Border under tables \usepackage{graphicx} % For images \usepackage{xcolor} % For hex colours %\usepackage[utf8x]{inputenc} % For unicode character support \usepackage[T1]{fontenc} % Without this we get weird character replacements \usepackage{colortbl} % For coloured tables \usepackage{setspace} % For line height \usepackage{lastpage} % Needed for total page number \usepackage{seqsplit} % Splits long words. %\usepackage{opensans} % Can't make this work so far. Shame. Would be lovely. \usepackage[normalem]{ulem} % For underlining links % Most of the following are not required for the majority % of cheat sheets but are needed for some symbol support. \usepackage{amsmath} % Symbols \usepackage{MnSymbol} % Symbols \usepackage{wasysym} % Symbols %\usepackage[english,german,french,spanish,italian]{babel} % Languages % Document Info \author{SH (Sana\_H)} \pdfinfo{ /Title (statistics-in-behavioral-sciences.pdf) /Creator (Cheatography) /Author (SH (Sana\_H)) /Subject (Statistics in Behavioral Sciences Cheat Sheet) } % Lengths and widths \addtolength{\textwidth}{6cm} \addtolength{\textheight}{-1cm} \addtolength{\hoffset}{-3cm} \addtolength{\voffset}{-2cm} \setlength{\tabcolsep}{0.2cm} % Space between columns \setlength{\headsep}{-12pt} % Reduce space between header and content \setlength{\headheight}{85pt} % If less, LaTeX automatically increases it \renewcommand{\footrulewidth}{0pt} % Remove footer line \renewcommand{\headrulewidth}{0pt} % Remove header line \renewcommand{\seqinsert}{\ifmmode\allowbreak\else\-\fi} % Hyphens in seqsplit % This two commands together give roughly % the right line height in the tables \renewcommand{\arraystretch}{1.3} \onehalfspacing % Commands \newcommand{\SetRowColor}[1]{\noalign{\gdef\RowColorName{#1}}\rowcolor{\RowColorName}} % Shortcut for row colour \newcommand{\mymulticolumn}[3]{\multicolumn{#1}{>{\columncolor{\RowColorName}}#2}{#3}} % For coloured multi-cols \newcolumntype{x}[1]{>{\raggedright}p{#1}} % New column types for ragged-right paragraph columns \newcommand{\tn}{\tabularnewline} % Required as custom column type in use % Font and Colours \definecolor{HeadBackground}{HTML}{333333} \definecolor{FootBackground}{HTML}{666666} \definecolor{TextColor}{HTML}{333333} \definecolor{DarkBackground}{HTML}{4B9AA3} \definecolor{LightBackground}{HTML}{F3F8F9} \renewcommand{\familydefault}{\sfdefault} \color{TextColor} % Header and Footer \pagestyle{fancy} \fancyhead{} % Set header to blank \fancyfoot{} % Set footer to blank \fancyhead[L]{ \noindent \begin{multicols}{3} \begin{tabulary}{5.8cm}{C} \SetRowColor{DarkBackground} \vspace{-7pt} {\parbox{\dimexpr\textwidth-2\fboxsep\relax}{\noindent \hspace*{-6pt}\includegraphics[width=5.8cm]{/web/www.cheatography.com/public/images/cheatography_logo.pdf}} } \end{tabulary} \columnbreak \begin{tabulary}{11cm}{L} \vspace{-2pt}\large{\bf{\textcolor{DarkBackground}{\textrm{Statistics in Behavioral Sciences Cheat Sheet}}}} \\ \normalsize{by \textcolor{DarkBackground}{SH (Sana\_H)} via \textcolor{DarkBackground}{\uline{cheatography.com/164538/cs/36366/}}} \end{tabulary} \end{multicols}} \fancyfoot[L]{ \footnotesize \noindent \begin{multicols}{3} \begin{tabulary}{5.8cm}{LL} \SetRowColor{FootBackground} \mymulticolumn{2}{p{5.377cm}}{\bf\textcolor{white}{Cheatographer}} \\ \vspace{-2pt}SH (Sana\_H) \\ \uline{cheatography.com/sana-h} \\ \end{tabulary} \vfill \columnbreak \begin{tabulary}{5.8cm}{L} \SetRowColor{FootBackground} \mymulticolumn{1}{p{5.377cm}}{\bf\textcolor{white}{Cheat Sheet}} \\ \vspace{-2pt}Published 17th January, 2023.\\ Updated 16th January, 2023.\\ Page {\thepage} of \pageref{LastPage}. \end{tabulary} \vfill \columnbreak \begin{tabulary}{5.8cm}{L} \SetRowColor{FootBackground} \mymulticolumn{1}{p{5.377cm}}{\bf\textcolor{white}{Sponsor}} \\ \SetRowColor{white} \vspace{-5pt} %\includegraphics[width=48px,height=48px]{dave.jpeg} Measure your website readability!\\ www.readability-score.com \end{tabulary} \end{multicols}} \begin{document} \raggedright \raggedcolumns % Set font size to small. Switch to any value % from this page to resize cheat sheet text: % www.emerson.emory.edu/services/latex/latex_169.html \footnotesize % Small font. \begin{multicols*}{2} \begin{tabularx}{8.4cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{8.4cm}}{\bf\textcolor{white}{{\bf{Statistics}}}} \tn \SetRowColor{white} \mymulticolumn{1}{x{8.4cm}}{the branch of mathematics in which data are used descriptively or inferentially to find or support answers for scientific and other quantifiable questions. \newline % Row Count 4 (+ 4) It encompasses various techniques and procedures for recording, organizing, analyzing, and reporting quantitative information.% Row Count 7 (+ 3) } \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{8.4cm}{x{2.052 cm} x{2.356 cm} x{3.192 cm} } \SetRowColor{DarkBackground} \mymulticolumn{3}{x{8.4cm}}{\bf\textcolor{white}{Difference - parametric test \& non-parametric test}} \tn % Row 0 \SetRowColor{LightBackground} \seqsplit{PROPERTIES} & PARAMETRIC & NON-PARAMETRIC \tn % Row Count 1 (+ 1) % Row 1 \SetRowColor{white} \seqsplit{assumptions} & YES & NO \tn % Row Count 3 (+ 2) % Row 2 \SetRowColor{LightBackground} value for central tendency & mean & median/mode \tn % Row Count 6 (+ 3) % Row 3 \SetRowColor{white} \seqsplit{probability} \seqsplit{distribution} & normally distributed & user specific \tn % Row Count 9 (+ 3) % Row 4 \SetRowColor{LightBackground} \seqsplit{population} knowledge & required & not required \tn % Row Count 11 (+ 2) % Row 5 \SetRowColor{white} used for & interval data & nominal, ordinal data \tn % Row Count 13 (+ 2) % Row 6 \SetRowColor{LightBackground} \seqsplit{correlation} & pearson & spearman \tn % Row Count 15 (+ 2) % Row 7 \SetRowColor{white} tests & t test, z test, f test, ANOVA & Kruskal Wallis H test, Mann-whitney U, Chi-square \tn % Row Count 19 (+ 4) \hhline{>{\arrayrulecolor{DarkBackground}}---} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{8.4cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{8.4cm}}{\bf\textcolor{white}{Correlation Coefficient}} \tn \SetRowColor{white} \mymulticolumn{1}{x{8.4cm}}{a statistical measure of the strength of the relationship between the relative movements of two variables \newline % Row Count 3 (+ 3) value ranges from {\bf{-1 to +1}} \newline % Row Count 4 (+ 1) -1 = perfect negative or inverse correlation \newline % Row Count 5 (+ 1) +1 = perfect positive correlation or direct relationship \newline % Row Count 7 (+ 2) 0 = no linear relationship% Row Count 8 (+ 1) } \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{8.4cm}{x{4 cm} x{4 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{8.4cm}}{\bf\textcolor{white}{Alternatives}} \tn % Row 0 \SetRowColor{LightBackground} {\bf{PARAMETRIC}} & {\bf{NON-PARAMETRIC}} \tn % Row Count 1 (+ 1) % Row 1 \SetRowColor{white} one sample z test, one sample t test & one sample sign test \tn % Row Count 3 (+ 2) % Row 2 \SetRowColor{LightBackground} one sample z test, one sample t test & one sample Wilcoxon signed rank test \tn % Row Count 5 (+ 2) % Row 3 \SetRowColor{white} two way ANOVA & Friedman test \tn % Row Count 6 (+ 1) % Row 4 \SetRowColor{LightBackground} one way ANOVA & Kruskal wallis test \tn % Row Count 7 (+ 1) % Row 5 \SetRowColor{white} independent sample t test & mann-whitney U test \tn % Row Count 9 (+ 2) % Row 6 \SetRowColor{LightBackground} one way ANOVA & mood's median test \tn % Row Count 10 (+ 1) % Row 7 \SetRowColor{white} pearson correlation & spearman correlation \tn % Row Count 11 (+ 1) \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{8.4cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{8.4cm}}{\bf\textcolor{white}{Paired t-test}} \tn \SetRowColor{white} \mymulticolumn{1}{x{8.4cm}}{{\emph{to compare means of two related groups}} \newline % Row Count 1 (+ 1) ex. compare weight of 20 mice before and after treatment \newline % Row Count 3 (+ 2) {\emph{two conditions:}} \newline % Row Count 4 (+ 1) - pre post treatment \newline % Row Count 5 (+ 1) - two diff conditions ex two drugs \newline % Row Count 6 (+ 1) {\emph{ASSUMPTIONS}} \newline % Row Count 7 (+ 1) - random selection \newline % Row Count 8 (+ 1) - normally distributed \newline % Row Count 9 (+ 1) - no extreme outliers \newline % Row Count 10 (+ 1) {\emph{FORMULA}} \newline % Row Count 11 (+ 1) {\bf{t= m / s/√n}} \newline % Row Count 12 (+ 1) m= sample mean of differences \newline % Row Count 13 (+ 1) {\bf{df= n-1}}% Row Count 14 (+ 1) } \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{8.4cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{8.4cm}}{\bf\textcolor{white}{t-distribution}} \tn \SetRowColor{white} \mymulticolumn{1}{x{8.4cm}}{{\emph{aka Student's t-distribution}} = probability distribution similar to normal distribution but {\bf{has heavier tails}} \newline % Row Count 3 (+ 3) used to estimate pop parameters for small samples \newline % Row Count 4 (+ 1) {\emph{Tail heaviness is determined by {\bf{degrees of freedom}} }} = gives lower probability to centre, higher to tails than normal distribution, also have higher kurtosis, symmetrical, unimodal, centred at 0, larger spread around 0 \newline % Row Count 9 (+ 5) {\bf{df = n - 1}} \newline % Row Count 10 (+ 1) above 30df, use z-distribution \newline % Row Count 11 (+ 1) {\bf{t-score}} = no of SD from mean in a t-distribution \newline % Row Count 13 (+ 2) we find: \newline % Row Count 14 (+ 1) - upper and lower boundaries \newline % Row Count 15 (+ 1) - p value \newline % Row Count 16 (+ 1) {\bf{TO BE USED WHEN:}} \newline % Row Count 17 (+ 1) - small sample \newline % Row Count 18 (+ 1) - SD is unknown \newline % Row Count 19 (+ 1) {\bf{ASSUMPTIONS}} \newline % Row Count 20 (+ 1) - cont or ordinal scale \newline % Row Count 21 (+ 1) - random selection \newline % Row Count 22 (+ 1) - NPC \newline % Row Count 23 (+ 1) - equal SD for indep two-sample t-test% Row Count 24 (+ 1) } \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{8.4cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{8.4cm}}{\bf\textcolor{white}{Two-sample z-test}} \tn \SetRowColor{white} \mymulticolumn{1}{x{8.4cm}}{{\emph{to determine if means of two independent populations are equal or different}} \newline % Row Count 2 (+ 2) {\emph{to find out if there is significant diff bet two pop by comparing sample mean}} \newline % Row Count 4 (+ 2) knowledge of: \newline % Row Count 5 (+ 1) {\bf{SD}} and {\bf{sample \textgreater{}30 in each group}} \newline % Row Count 6 (+ 1) eg. compare performance of 2 students, average salaries, employee performance, compare IQ, etc \newline % Row Count 8 (+ 2) FORMULA: \newline % Row Count 9 (+ 1) z= x̄₁ - x̄₂ / √s₁\textasciicircum{}2\textasciicircum{}/n₁ + s₂\textasciicircum{}2\textasciicircum{}/n₂ \newline % Row Count 11 (+ 2) s= SD \newline % Row Count 12 (+ 1) formula: \newline % Row Count 13 (+ 1) z= (x̄₁ - x̄₂) - (µ₁ - µ₂) / √σ₁\textasciicircum{}2\textasciicircum{}/n₁ + σ₂\textasciicircum{}2\textasciicircum{}/n₂ \newline % Row Count 15 (+ 2) (µ₁ - µ₂) = hypothesized difference bet pop means% Row Count 17 (+ 2) } \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{8.4cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{8.4cm}}{\bf\textcolor{white}{Point Biserial correlation}} \tn \SetRowColor{white} \mymulticolumn{1}{x{8.4cm}}{{\emph{measures relationship between two variables}} \newline % Row Count 1 (+ 1) {\bf{rpbi}} = correlation coefficient \newline % Row Count 2 (+ 1) {\bf{one continuous variable (ratio/interval scale)}} \newline % Row Count 4 (+ 2) {\bf{one naturally binary variable}} \newline % Row Count 5 (+ 1) FORMULA: \newline % Row Count 6 (+ 1) {\bf{rpb= M1-M0/Sn * √ pq}} \newline % Row Count 7 (+ 1) Sn= SD% Row Count 8 (+ 1) } \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{8.4cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{8.4cm}}{\bf\textcolor{white}{Two-sample z-test}} \tn \SetRowColor{white} \mymulticolumn{1}{x{8.4cm}}{{\emph{to determine if means of two independent populations are equal or different}} \newline % Row Count 2 (+ 2) {\emph{to find out if there is significant diff bet two pop by comparing sample mean}} \newline % Row Count 4 (+ 2) knowledge of: \newline % Row Count 5 (+ 1) {\bf{SD}} and {\bf{sample \textgreater{}30 in each group}} \newline % Row Count 6 (+ 1) eg. compare performance of 2 students, average salaries, employee performance, compare IQ, etc \newline % Row Count 8 (+ 2) FORMULA: \newline % Row Count 9 (+ 1) z= x̄% Row Count 10 (+ 1) } \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{8.4cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{8.4cm}}{\bf\textcolor{white}{z-test}} \tn \SetRowColor{white} \mymulticolumn{1}{x{8.4cm}}{{\bf{for hypothesis testing}} \newline % Row Count 1 (+ 1) to check whether means of two populations are equal to each other when pop variance is known \newline % Row Count 3 (+ 2) we have knowledge of: \newline % Row Count 4 (+ 1) - {\emph{SD/population variance and/or sample n=30 or more}} \newline % Row Count 6 (+ 2) `if both unknown -\textgreater{} t-test` \newline % Row Count 7 (+ 1) {\bf{left-tailed}} \newline % Row Count 8 (+ 1) {\bf{right-tailed}} \newline % Row Count 9 (+ 1) {\bf{two-tailed}} \newline % Row Count 10 (+ 1) {\bf{REJECT NULL HYPOTHESIS IF Z STATISTIC IS STATISTICALLY SIGNIFICANT WHEN COMPARED WITH CRITICAL VALUE}} \newline % Row Count 13 (+ 3) z-statistic/ z-score = no representing result from z-test \newline % Row Count 15 (+ 2) z critical value divides graph into acceptance and rejection regions \newline % Row Count 17 (+ 2) if z stat falls in rejection region-\textgreater{} H0 can be rejected \newline % Row Count 19 (+ 2) {\bf{TYPES}} \newline % Row Count 20 (+ 1) One-sample z-test \newline % Row Count 21 (+ 1) Two-sample z-test% Row Count 22 (+ 1) } \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{8.4cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{8.4cm}}{\bf\textcolor{white}{ANOVA}} \tn \SetRowColor{white} \mymulticolumn{1}{x{8.4cm}}{{\bf{Analysis of Variance}} \newline % Row Count 1 (+ 1) {\emph{comparing several sets of scores}} \newline % Row Count 2 (+ 1) {\emph{to test if means of 3 or more groups are equal}} \newline % Row Count 3 (+ 1) {\emph{comparison of variance between and within groups}} \newline % Row Count 5 (+ 2) {\emph{to check if sample groups are affected by same factors and to same degree}} \newline % Row Count 7 (+ 2) {\emph{compare differences in means and variance of distribution}} \newline % Row Count 9 (+ 2) {\bf{ONE-WAY ANOVA}}=no of IVs \newline % Row Count 10 (+ 1) single IV with different (2) levels/variations have measurable effect on DV \newline % Row Count 12 (+ 2) {\emph{compare means of 2 or more indep groups}} \newline % Row Count 13 (+ 1) aka: \newline % Row Count 14 (+ 1) - one-factor ANOVA \newline % Row Count 15 (+ 1) - one-way analysis of variance \newline % Row Count 16 (+ 1) - between subjects ANOVA \newline % Row Count 17 (+ 1) {\bf{Assumptions}} \newline % Row Count 18 (+ 1) - independent samples \newline % Row Count 19 (+ 1) - equal sample sizes in groups/levels \newline % Row Count 20 (+ 1) - normally distributed \newline % Row Count 21 (+ 1) - equal variance \newline % Row Count 22 (+ 1) {\bf{F test is used to check statistical significance}} \newline % Row Count 24 (+ 2) higher F value -{}-\textgreater{} higher likelihood that difference observed is real and not due to chance \newline % Row Count 26 (+ 2) {\emph{used in field studies, experiments, quasi-exp}} \newline % Row Count 27 (+ 1) CONDITIONS: \newline % Row Count 28 (+ 1) - min 6 subjects \newline % Row Count 29 (+ 1) - sample no of samples in each group \newline % Row Count 30 (+ 1) } \tn \end{tabularx} \par\addvspace{1.3em} \vfill \columnbreak \begin{tabularx}{8.4cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{8.4cm}}{\bf\textcolor{white}{ANOVA (cont)}} \tn \SetRowColor{white} \mymulticolumn{1}{x{8.4cm}}{H0: µ1=µ2=µ3 ... µk i.e. all pop means are equal \newline % Row Count 2 (+ 2) Ha: at least one µi is different i.e atleat one of the k pop means is not equal to the others \newline % Row Count 4 (+ 2) {\bf{µi is the pop mean of group}}% Row Count 5 (+ 1) } \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{8.4cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{8.4cm}}{\bf\textcolor{white}{Spearman Correlation}} \tn \SetRowColor{white} \mymulticolumn{1}{x{8.4cm}}{{\emph{non-parametric version of Pearson correlation coefficient}} \newline % Row Count 2 (+ 2) named after Charles Spearman \newline % Row Count 3 (+ 1) denoted by {\bf{ρ}}(rho) \newline % Row Count 4 (+ 1) determine the strength and direction of monotonic variables bet two variables measured at ordinal, interval or ratio levels \& whether they are correlated or not \newline % Row Count 8 (+ 4) {\bf{monotonic function}}=one variable never increases or never decreases as its IV changes \newline % Row Count 10 (+ 2) - monotonically increasing= as X increases, Y never decreases \newline % Row Count 12 (+ 2) - monotonically decreasing= as X increases, Y never increases \newline % Row Count 14 (+ 2) - not monotonic= as X increases, Y sometimes dec and sometimes inc \newline % Row Count 16 (+ 2) for analysis with: ordinal data, continuous data \newline % Row Count 17 (+ 1) {\bf{uses ranks instead of assumptions of normality}} \newline % Row Count 19 (+ 2) aka Spearman Rank order test \newline % Row Count 20 (+ 1) {\bf{FORMULA:}} \newline % Row Count 21 (+ 1) ρ= 1- 6Σdᵢ\textasciicircum{}2\textasciicircum{}/n(n\textasciicircum{}2\textasciicircum{}-1) \newline % Row Count 22 (+ 1) di= difference between two ranks of each observation \newline % Row Count 24 (+ 2) -1 to +1 \newline % Row Count 25 (+ 1) +1 = perfect association of ranks \newline % Row Count 26 (+ 1) 0= no association \newline % Row Count 27 (+ 1) -1= perfect negative association of ranks \newline % Row Count 28 (+ 1) {\bf{closer the value to 0, weaker the association}} \newline % Row Count 29 (+ 1) {\bf{Value Ranges}} \newline % Row Count 30 (+ 1) } \tn \end{tabularx} \par\addvspace{1.3em} \vfill \columnbreak \begin{tabularx}{8.4cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{8.4cm}}{\bf\textcolor{white}{Spearman Correlation (cont)}} \tn \SetRowColor{white} \mymulticolumn{1}{x{8.4cm}}{0 to 0.3 = weak monotonic relationship \newline % Row Count 1 (+ 1) 0.4 to 0.6 = moderate strength monotonic relationship \newline % Row Count 3 (+ 2) 0.7 to 1 = strong monotonic relationship% Row Count 4 (+ 1) } \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{8.4cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{8.4cm}}{\bf\textcolor{white}{Parametric and Non-parametric test}} \tn \SetRowColor{white} \mymulticolumn{1}{x{8.4cm}}{Fixed set of parameters, certain assumptions about {\bf{distribution of population}} \newline % Row Count 2 (+ 2) {\bf{PARAMETRIC}} - {\emph{prior knowledge of pop distribution i.e NORMAL DISTRIBUTION}} \newline % Row Count 4 (+ 2) {\bf{NON-PARAMETRIC}} - {\emph{no assumptions, do not depend on population, DISTRIBUTION FREE tests, values found on nominal or ordinal level}} \newline % Row Count 7 (+ 3) easy to apply, understand, low complexity \newline % Row Count 8 (+ 1) {\emph{decision based on}} - distribution of population, size of sample \newline % Row Count 10 (+ 2) parametric - mean \& \textless{}30 sample \newline % Row Count 11 (+ 1) non-parametric - median/mode \& \textgreater{}30 sample or regardless of size% Row Count 13 (+ 2) } \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{8.4cm}{x{4 cm} x{4 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{8.4cm}}{\bf\textcolor{white}{Advantages \& Disadvantages - NON-PARAMETRIC TESTS}} \tn % Row 0 \SetRowColor{LightBackground} {\bf{ADVANTAGES}} & {\bf{DISADVANTAGES}} \tn % Row Count 1 (+ 1) % Row 1 \SetRowColor{white} simple, easy to understand & less powerful than parametrics \tn % Row Count 3 (+ 2) % Row 2 \SetRowColor{LightBackground} no assumptions & counterpart parametric if exists, is more powerful \tn % Row Count 6 (+ 3) % Row 3 \SetRowColor{white} more versatile & not as efficient as parametric tests \tn % Row Count 8 (+ 2) % Row 4 \SetRowColor{LightBackground} easier to calculate & may waste information \tn % Row Count 10 (+ 2) % Row 5 \SetRowColor{white} hypothesis tested may be more accurate & requires larger sample to be as powerful as parametric test \tn % Row Count 13 (+ 3) % Row 6 \SetRowColor{LightBackground} small sample sizes are okay & difficult to compute large samples by hand \tn % Row Count 16 (+ 3) % Row 7 \SetRowColor{white} can be used for all types of data (nominal, ordinal, interval) & tabular format of data required that may not be readily available \tn % Row Count 20 (+ 4) % Row 8 \SetRowColor{LightBackground} \mymulticolumn{2}{x{8.4cm}}{can be used with data having outliers} \tn % Row Count 21 (+ 1) \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{8.4cm}{x{4.08 cm} x{3.92 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{8.4cm}}{\bf\textcolor{white}{Application}} \tn % Row 0 \SetRowColor{LightBackground} {\bf{PARAMETRIC TESTS}} & {\bf{NON-PARAMETRIC TESTS}} \tn % Row Count 2 (+ 2) % Row 1 \SetRowColor{white} - quantitative \& continuous data & - mixed data \tn % Row Count 4 (+ 2) % Row 2 \SetRowColor{LightBackground} - normally distributed & - unknown distribution of population \tn % Row Count 6 (+ 2) % Row 3 \SetRowColor{white} - data is estimated on {\bf{ratio}} or {\bf{interval}} scales & - different kinds of measurement scales \tn % Row Count 9 (+ 3) \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{8.4cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{8.4cm}}{\bf\textcolor{white}{degrees of freedom}} \tn \SetRowColor{white} \mymulticolumn{1}{x{8.4cm}}{independent values in the data sample that have freedom to vary \newline % Row Count 2 (+ 2) FORMULA: \newline % Row Count 3 (+ 1) no of values in a data set minus 1 \newline % Row Count 4 (+ 1) {\emph{df= N-1}}% Row Count 5 (+ 1) } \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{8.4cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{8.4cm}}{\bf\textcolor{white}{t-test}} \tn \SetRowColor{white} \mymulticolumn{1}{x{8.4cm}}{{\emph{statistical test to determine if significant difference between avg scores of two groups}} \newline % Row Count 2 (+ 2) 1908-William Sealy Gosset- {\bf{student t-test and t-distirbution}} \newline % Row Count 4 (+ 2) {\emph{for hypothesis testing}} \newline % Row Count 5 (+ 1) knowledge of: \newline % Row Count 6 (+ 1) {\bf{distribution - normally distributed}} \newline % Row Count 7 (+ 1) {\bf{no knowledge of SD}} \newline % Row Count 8 (+ 1) {\bf{TYPES:}} \newline % Row Count 9 (+ 1) {\bf{one-sample t-test}} - single group \newline % Row Count 10 (+ 1) {\bf{FORMULA:}} \newline % Row Count 11 (+ 1) {\bf{t= m - µ / s/√n}} \newline % Row Count 12 (+ 1) {\bf{SD FORMULA:}} \newline % Row Count 13 (+ 1) {\bf{σ= √Σ(X-µ)\textasciicircum{}2\textasciicircum{} / N}} \newline % Row Count 14 (+ 1) {\bf{s= √Σ(X-µ)\textasciicircum{}2\textasciicircum{} / n-1}} \newline % Row Count 15 (+ 1) {\bf{independent two-sample t-test}} - two groups \newline % Row Count 16 (+ 1) {\bf{paired/dependent samples t-test}} - sig diff in paired measurements, compares means from same group at diff times (test-retest sample) \newline % Row Count 19 (+ 3) H0: no effective difference = {\bf{measured diff is due to chance}} \newline % Row Count 21 (+ 2) Ha: two-tailed/ one-tailed {\emph{nonequivalent means/smaller or larger than hypothesized mean}} \newline % Row Count 23 (+ 2) PERFORM {\bf{two-tailed test}}: to find out difference bet two populations \newline % Row Count 25 (+ 2) {\bf{one-tailed}}: one pop mean is \textgreater{} or \textless{} other% Row Count 26 (+ 1) } \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{8.4cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{8.4cm}}{\bf\textcolor{white}{Independent two-sample t-test}} \tn \SetRowColor{white} \mymulticolumn{1}{x{8.4cm}}{{\emph{aka unpaired t-test}} \newline % Row Count 1 (+ 1) {\bf{to compare mean of two independent groups}} \newline % Row Count 2 (+ 1) ex. avg weight of males and females \newline % Row Count 3 (+ 1) two forms: \newline % Row Count 4 (+ 1) - {\bf{student's t-test}}: assumes SD is equal \newline % Row Count 5 (+ 1) - {\bf{welch's t-test}}: less restrictive, no assumption of equal SD \newline % Row Count 7 (+ 2) {\emph{both provide more/less similar results}} \newline % Row Count 8 (+ 1) ASSUMPTIONS: \newline % Row Count 9 (+ 1) - normally distributed \newline % Row Count 10 (+ 1) - SD is same \newline % Row Count 11 (+ 1) - independent groups \newline % Row Count 12 (+ 1) - randomly selected \newline % Row Count 13 (+ 1) - independent observations \newline % Row Count 14 (+ 1) - measured on {\bf{interval}} or {\bf{ratio}} scale \newline % Row Count 15 (+ 1) FORMULA: \newline % Row Count 16 (+ 1) {\bf{t= x̄₁ - x̄₂ / √s₁2/n₁ + s₂2/n₂}} \newline % Row Count 18 (+ 2) {\bf{df= n1 + n2 - 2}} \newline % Row Count 19 (+ 1) {\bf{S= √Σ (x1-x̄)\textasciicircum{}2\textasciicircum{} + (x2-x̄)\textasciicircum{}2\textasciicircum{} / n1+n2-2}}% Row Count 20 (+ 1) } \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{8.4cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{8.4cm}}{\bf\textcolor{white}{One-sample z-test}} \tn \SetRowColor{white} \mymulticolumn{1}{x{8.4cm}}{{\emph{to check if difference between sample mean \& population mean when SD is known}} \newline % Row Count 2 (+ 2) FORMULA: \newline % Row Count 3 (+ 1) z=x-µ/SE \newline % Row Count 4 (+ 1) SE=σ/√n \newline % Row Count 5 (+ 1) {\bf{z score}} is compared to a {\bf{z table}} (includes \% under NPC bet mean and z score), tells us whether the z score is due to chance or not \newline % Row Count 8 (+ 3) {\bf{conditions:}} \newline % Row Count 9 (+ 1) knowledge of: \newline % Row Count 10 (+ 1) - pop mean \newline % Row Count 11 (+ 1) - SD \newline % Row Count 12 (+ 1) - simple random sample \newline % Row Count 13 (+ 1) - normal distribution \newline % Row Count 14 (+ 1) {\emph{two approaches to reject H0:}} \newline % Row Count 15 (+ 1) - {\bf{p-value approach}} - p-value is the smallest level of significance at which H0 can be rejected...{\emph{smaller p-value, stronger evidence}} \newline % Row Count 18 (+ 3) -{\bf{critical value approach}} - comparing z stat to critical values... indicate boundary regions where stat is highly improbable to lie= critical regions/rejection regions \newline % Row Count 22 (+ 4) if z stat is in critical region-\textgreater{} reject H0 \newline % Row Count 23 (+ 1) {\emph{based on}}: \newline % Row Count 24 (+ 1) significance level (0.1, 0.05, 0.01), alpha level, Ha% Row Count 26 (+ 2) } \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{8.4cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{8.4cm}}{\bf\textcolor{white}{Biserial correlation}} \tn \SetRowColor{white} \mymulticolumn{1}{x{8.4cm}}{{\emph{to measure relationship between {\bf{quantitative variables}} and {\bf{binary variables}} }} \newline % Row Count 2 (+ 2) given by Pearson - 1909 \newline % Row Count 3 (+ 1) biserial correlation coeff varies bet {\bf{-1}} and {\bf{1}} \newline % Row Count 5 (+ 2) 0= no association \newline % Row Count 6 (+ 1) ex. IQ scores and pass/fail correlation \newline % Row Count 7 (+ 1) {\bf{continuous variable}} and {\bf{binary variable}} (dichotomised to create binary variable) \newline % Row Count 9 (+ 2) {\bf{rbis}} or {\bf{rb}} = correlation index estimating strength of relationship between artificially dichotomous variable and a true continuous variable \newline % Row Count 12 (+ 3) ASSUMPTIONS: \newline % Row Count 13 (+ 1) - data measured on continuous scale \newline % Row Count 14 (+ 1) - one variable to be made dichotomous \newline % Row Count 15 (+ 1) - no outliers \newline % Row Count 16 (+ 1) - approx normally distributed \newline % Row Count 17 (+ 1) - equal variances (SD) \newline % Row Count 18 (+ 1) {\bf{FORMULA}} \newline % Row Count 19 (+ 1) {\bf{rb= M1-M0/SDt * pq/y }} \newline % Row Count 20 (+ 1) M1=mean of grp 1 \newline % Row Count 21 (+ 1) M2= mean of grp 2 \newline % Row Count 22 (+ 1) p= ratio of grp 1 \newline % Row Count 23 (+ 1) q= ratio of grp 2 \newline % Row Count 24 (+ 1) SDt= total SD \newline % Row Count 25 (+ 1) y= ordinate% Row Count 26 (+ 1) } \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{8.4cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{8.4cm}}{\bf\textcolor{white}{Pearson Correlation}} \tn \SetRowColor{white} \mymulticolumn{1}{x{8.4cm}}{{\emph{measures {\bf{strength and direction}} of a linear relationship between two variables}} \newline % Row Count 2 (+ 2) how two data sets are correlated \newline % Row Count 3 (+ 1) {\emph{gives us info about the slope of the line}} \newline % Row Count 4 (+ 1) {\bf{r}} \newline % Row Count 5 (+ 1) aka: \newline % Row Count 6 (+ 1) - Pearson's r \newline % Row Count 7 (+ 1) - bivariate correlation \newline % Row Count 8 (+ 1) - Pearson product-moment correlation coefficient (PPMCC) \newline % Row Count 10 (+ 2) {\emph{cannot determine dependence of variables \& cannot assess nonlinear associations}} \newline % Row Count 12 (+ 2) {\bf{r value variation:}} \newline % Row Count 13 (+ 1) -0.1 to -.03 / 0.1 to 0.3 = weak correlation \newline % Row Count 14 (+ 1) -0.3 to -0.5 / 0.3 to 0.5 = average/moderate correlation \newline % Row Count 16 (+ 2) -0.5 to -1.0 / 0.5 to 1.0 = strong correlation \newline % Row Count 17 (+ 1) {\bf{FORMULA:}} \newline % Row Count 18 (+ 1) r=n(Σxy)-(Σx)(Σy) / √{[}nΣx\textasciicircum{}2\textasciicircum{}-(Σx)\textasciicircum{}2\textasciicircum{}{]} {[}nΣy\textasciicircum{}2\textasciicircum{}-(Σy)\textasciicircum{}2\textasciicircum{}{]}% Row Count 20 (+ 2) } \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{8.4cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{8.4cm}}{\bf\textcolor{white}{Mann-Whitney U test}} \tn \SetRowColor{white} \mymulticolumn{1}{x{8.4cm}}{{\emph{non-parametric test to test the significance of difference two independently drawn groups OR compare outcomes between two independent groups}} \newline % Row Count 3 (+ 3) equi to unpaired t test \newline % Row Count 4 (+ 1) {\bf{CONDITIONS:}} \newline % Row Count 5 (+ 1) No NPC assumption, small sample size \textgreater{}30 with min 5 in each group, continuous data (able to take any no in range), randomly selected samples, \newline % Row Count 8 (+ 3) aka: \newline % Row Count 9 (+ 1) Mann-Whitney Test \newline % Row Count 10 (+ 1) Wilcoxon Rank Sum test \newline % Row Count 11 (+ 1) H0: the two pop are equal \newline % Row Count 12 (+ 1) Ha: the two pop are not equal \newline % Row Count 13 (+ 1) {\bf{denoted by U}} \newline % Row Count 14 (+ 1) {\bf{FORMULA:}} \newline % Row Count 15 (+ 1) {\bf{U1=n1n2+ n1(n1+1)/2 - R1}} \newline % Row Count 16 (+ 1) {\bf{U2=n1n2+ n2(n2+1)/2 - R2}} \newline % Row Count 17 (+ 1) R= sum of ranks of group% Row Count 18 (+ 1) } \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{8.4cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{8.4cm}}{\bf\textcolor{white}{One-way ANOVA test}} \tn \SetRowColor{LightBackground} \mymulticolumn{1}{p{8.4cm}}{\vspace{1px}\centerline{\includegraphics[width=5.1cm]{/web/www.cheatography.com/public/uploads/sana-h_1673894707_Untitled.png}}} \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{8.4cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{8.4cm}}{\bf\textcolor{white}{One-way ANOVA test}} \tn \SetRowColor{LightBackground} \mymulticolumn{1}{p{8.4cm}}{\vspace{1px}\centerline{\includegraphics[width=5.1cm]{/web/www.cheatography.com/public/uploads/sana-h_1673894753_u1.png}}} \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{8.4cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{8.4cm}}{\bf\textcolor{white}{One-way ANOVA test}} \tn \SetRowColor{LightBackground} \mymulticolumn{1}{p{8.4cm}}{\vspace{1px}\centerline{\includegraphics[width=5.1cm]{/web/www.cheatography.com/public/uploads/sana-h_1673894811_u2.png}}} \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} % That's all folks \end{multicols*} \end{document}