Cheatography

Statistics

the branch of mathematics in which data are used descriptively or inferentially to find or support answers for scientific and other quantifiable questions.
It encompasses various techniques and procedures for recording, organizing, analyzing, and reporting quantitative information.

Difference - parametric test \& non-parametric test		
PROPERTIES	PARAMETRIC	NON-PARAMETRIC
assumptions	YES	NO
value for central tendency	mean	median/mode
probability distribution	normally distri-	user specific
population knowledge	required	not required
used for	interval data	nominal, ordinal data
correlation	pearson	spearman
tests	t test, z test, f	Kruskal Wallis H test, Mann-w-
test, ANOVA	hitney U, Chi-square	

Correlation Coefficient

a statistical measure of the strength of the relationship between the relative movements of two variables
value ranges from -1 to +1
$-1=$ perfect negative or inverse correlation
$+1=$ perfect positive correlation or direct relationship
$0=$ no linear relationship

Alternatives	NON-PARAMETRIC
PARAMETRIC	one sample sign test
one sample z test, one sample t	
test	Friedman test
one sample z test, one sample t	one sample Wilcoxon signed rank
test	Kruskal wallis test
two way ANOVA	mann-whitney U test
one way ANOVA	mood's median test
independent sample t test	spearman correlation
one way ANOVA	

```
Paired t-test
to compare means of two related groups
ex. compare weight of 20 mice before and after treatment
two conditions.
- pre post treatment
- two diff conditions ex two drugs
ASSUMPTIONS
- random selection
- normally distributed
- no extreme outliers
FORMULA
t=m/s/\sqrt{}{\mathbf{n}}\mathbf{}\mathbf{n}
m= sample mean of differences
df= n-1
```


t-distribution

aka Student's t-distribution = probability distribution similar to normal distribution but has heavier tails used to estimate pop parameters for small samples
Tail heaviness is determined by degrees of freedom = gives lower probability to centre, higher to tails than normal distribution, also have higher kurtosis, symmetrical, unimodal, centred at 0 , larger spread around 0
$\mathbf{d f}=\mathbf{n - 1}$
above 30df, use z-distribution
t-score $=$ no of SD from mean in a t-distribution we find:

- upper and lower boundaries
- p value

TO BE USED WHEN:

- small sample
- SD is unknown

ASSUMPTIONS

- cont or ordinal scale
- random selection
- NPC
- equal SD for indep two-sample t-test

By SH (Sana_H)
cheatography.com/sana-h/

Published 17th January, 2023.
Last updated 16th January, 2023.
Page 1 of 5 .

Sponsored by Readable.com
Measure your website readability!
https://readable.com

Cheatography

```
Two-sample z-test
to determine if means of two independent populations are equal or different
to find out if there is significant diff bet two pop by comparing sample mean
knowledge of:
SD and sample >30 in each group
eg. compare performance of 2 students, average salaries, employee performance, compare IQ, etc
FORMULA:
\(\mathrm{z}=\overline{\mathrm{x}}_{1}-\overline{\mathrm{x}}_{2} / \sqrt{ } \mathrm{s}_{1}{ }^{2} / \mathrm{n}_{1}+\mathrm{s}_{2}{ }^{2} / \mathrm{n}_{2}\)
\(s=S D\)
formula:
\(z=\left(\bar{x}_{1}-\bar{x}_{2}\right)-\left(\mu_{1}-\mu_{2}\right) / \sqrt{ } \sigma_{1}{ }^{2} / n_{1}+\sigma_{2}^{2} / n_{2}\)
\(\left(\mu_{1}-\mu_{2}\right)=\) hypothesized difference bet pop means
```


Point Biserial correlation

measures relationship between two variables
rpbi = correlation coefficient
one continuous variable (ratio/interval scale)
one naturally binary variable
FORMULA:
rpb $=$ M1-M0/Sn * $\sqrt{ }$ pq
$S n=S D$

Two-sample z-test

to determine if means of two independent populations are equal or different
to find out if there is significant diff bet two pop by comparing sample mean
knowledge of:
SD and sample >30 in each group
eg. compare performance of 2 students, average salaries, employee performance, compare IQ, etc
FORMULA:
$z=\bar{x}$

z-test

for hypothesis testing

to check whether means of two populations are equal to each other when pop variance is known
we have knowledge of:

- SD/population variance and/or sample $n=30$ or more
if both unknown -> t-test
left-tailed
right-tailed
two-tailed

z-test (cont)

REJECT NULL HYPOTHESIS IF Z STATISTIC IS STATISTICALLY SIGNIFICANT WHEN COMPARED WITH CRITICAL VALUE
z-statistic/ z-score = no representing result from z-test z critical value divides graph into acceptance and rejection regions if z stat falls in rejection region-> H0 can be rejected

TYPES

One-sample z-test
Two-sample z-test

ANOVA

Analysis of Variance

comparing several sets of scores
to test if means of 3 or more groups are equal
comparison of variance between and within groups
to check if sample groups are affected by same factors and to same
degree
compare differences in means and variance of distribution
ONE-WAY ANOVA=no of IVs
single IV with different (2) levels/variations have measurable effect on DV
compare means of 2 or more indep groups
aka:

- one-factor ANOVA
- one-way analysis of variance
- between subjects ANOVA

Assumptions

- independent samples
- equal sample sizes in groups/levels
- normally distributed
- equal variance

F test is used to check statistical significance
higher F value --> higher likelihood that difference observed is real and not due to chance
used in field studies, experiments, quasi-exp
CONDITIONS:

- min 6 subjects
- sample no of samples in each group

H0: $\mu 1=\mu 2=\mu 3 \ldots \mu \mathrm{k}$ i.e. all pop means are equal
Ha : at least one $\mu \mathrm{i}$ is different i.e atleat one of the k pop means is not equal to the others
$\mu \mathrm{i}$ is the pop mean of group

By SH (Sana_H)
cheatography.com/sana-h/

Published 17th January, 2023.
Last updated 16th January, 2023.
Page 2 of 5.

Sponsored by Readable.com
Measure your website readability! https://readable.com

Cheatography

Spearman Correlation

non-parametric version of Pearson correlation coefficient named after Charles Spearman
denoted by ρ (rho)
determine the strength and direction of monotonic variables bet two variables measured at ordinal, interval or ratio levels \& whether they are correlated or not
monotonic function=one variable never increases or never decreases as its IV changes

- monotonically increasing= as X increases, Y never decreases
- monotonically decreasing $=$ as X increases, Y never increases
- not monotonic= as X increases, Y sometimes dec and sometimes
inc
for analysis with: ordinal data, continuous data
uses ranks instead of assumptions of normality
aka Spearman Rank order test

FORMULA:

$\rho=1-6 \Sigma \mathrm{di}^{2} / n\left(\mathrm{n}^{2}-1\right)$
di= difference between two ranks of each observation
-1 to +1
+1 = perfect association of ranks
$0=$ no association
$-1=$ perfect negative association of ranks
closer the value to 0 , weaker the association
Value Ranges
0 to 0.3 = weak monotonic relationship
0.4 to $0.6=$ moderate strength monotonic relationship
0.7 to 1 = strong monotonic relationship

Parametric and Non-parametric test

Fixed set of parameters, certain assumptions about distribution of population
PARAMETRIC - prior knowledge of pop distribution i.e NORMAL DISTRIBUTION
NON-PARAMETRIC - no assumptions, do not depend on population,
DISTRIBUTION FREE tests, values found on nominal or ordinal
level
easy to apply, understand, low complexity
decision based on - distribution of population, size of sample
parametric - mean \& <30 sample
non-parametric - median/mode \& >30 sample or regardless of size

Advantages \& Disadvantages - NON-PARAMETRIC TESTS
\(\left.$$
\begin{array}{ll}\text { ADVANTAGES } & \text { DISADVANTAGES } \\
\text { simple, easy to understand } & \text { less powerful than parametrics } \\
\text { no assumptions } & \begin{array}{l}\text { counterpart parametric if exists, is } \\
\text { more powerful }\end{array}
$$

mot as efficient as parametric tests\end{array}\right\}\)| easier to calculate | may waste information |
| :--- | :--- |
| hypothesis tested may be more | requires larger sample to be as
 powerful as parametric test |
| accurate | difficult to compute large samples
 small sample sizes are okay |
| can be used for all types of | tabular format of data required |
| data (nominal, ordinal, interval) | that may not be readily available |
| can be used with data having outliers | |

Application	
PARAMETRIC TESTS	NON-PARAMETRIC TESTS
- quantitative \& continuous data	- mixed data
- normally distributed	- unknown distribution of population
- data is estimated on ratio or	- different kinds of measur- interval scales

degrees of freedom

independent values in the data sample that have freedom to vary FORMULA:
no of values in a data set minus 1
$d f=N-1$

t-test

statistical test to determine if significant difference between avg scores of two groups
1908-William Sealy Gosset-student t-test and t-distirbution
for hypothesis testing
knowledge of:
distribution - normally distributed

By SH (Sana_H)
cheatography.com/sana-h/

Published 17th January, 2023. Last updated 16th January, 2023. Page 3 of 5 .

Sponsored by Readable.com Measure your website readability! https://readable.com

t-test (cont)

no knowledge of SD

TYPES:

one-sample t-test - single group
FORMULA:
$\mathrm{t}=\mathrm{m}-\mu / \mathrm{s} / \sqrt{ } \mathrm{n}$

SD FORMULA:

$\sigma=\sqrt{ } \Sigma(X-\mu)^{2} / N$
$s=\sqrt{\Sigma}(X-\mu)^{2} / n-1$
independent two-sample t-test - two groups
paired/dependent samples t-test - sig diff in paired measurements,
compares means from same group at diff times (test-retest sample)
H0: no effective difference = measured diff is due to chance
Ha: two-tailed/ one-tailed nonequivalent means/smaller or larger than hypothesized mean
PERFORM two-tailed test: to find out difference bet two populations one-tailed: one pop mean is > or < other

Independent two-sample t-test

aka unpaired t-test

to compare mean of two independent groups
ex. avg weight of males and females
two forms:

- student's t-test: assumes SD is equal
- welch's t-test: less restrictive, no assumption of equal SD
both provide more/less similar results
ASSUMPTIONS:
- normally distributed
- SD is same
- independent groups
- randomly selected
- independent observations
- measured on interval or ratio scale

FORMULA:
$\mathrm{t}=\overline{\mathbf{x}}_{1}-\overline{\mathrm{x}}_{2} / \sqrt{ } \mathrm{s}_{1} 2 / \mathrm{n}_{1}+\mathrm{s}_{2} 2 / \mathrm{n}_{2}$
$\mathrm{df}=\mathrm{n} 1+\mathrm{n} 2-2$
$S=\sqrt{ } \Sigma(x 1-\bar{x})^{2}+(x 2-\bar{x})^{2} / n 1+n 2-2$

One-sample z-test

to check if difference between sample mean \& population mean when $S D$ is known

FORMULA:
$z=x-\mu / S E$
SE $=\sigma / \sqrt{ }$ n
z score is compared to a z table (includes \% under NPC bet mean and z score), tells us whether the z score is due to chance or not conditions:
knowledge of:

- pop mean
- SD
- simple random sample
- normal distribution
two approaches to reject HO :
- p-value approach - p-value is the smallest level of significance at which H 0 can be rejected...smaller p-value, stronger evidence -critical value approach - comparing z stat to critical values... indicate boundary regions where stat is highly improbable to lie= critical regions/rejection regions
if z stat is in critical region-> reject H 0 based on:
significance level (0.1, 0.05, 0.01), alpha level, Ha

```
Biserial correlation
to measure relationship between quantitative variables and binary
variables
given by Pearson - }190
biserial correlation coeff varies bet -1 and 1
0= no association
ex. IQ scores and pass/fail correlation
continuous variable and binary variable (dichotomised to create
binary variable)
rbis or rb = correlation index estimating strength of relationship
between artificially dichotomous variable and a true continuous
variable
ASSUMPTIONS:
- data measured on continuous scale
- one variable to be made dichotomous
- no outliers
- approx normally distributed
- equal variances (SD)
FORMULA
rb= M1-M0/SDt * pq/y
```

By SH (Sana_H)
cheatography.com/sana-h/

Published 17th January, 2023.
Last updated 16th January, 2023.
Page 4 of 5 .

[^0]
Cheatography

Biserial correlation (cont)

M1=mean of grp 1

M2= mean of grp 2
$p=$ ratio of grp 1
$q=$ ratio of grp 2
SDt= total SD
$y=$ ordinate

Pearson Correlation

measures strength and direction of a linear relationship between two variables
how two data sets are correlated
gives us info about the slope of the line
r
aka:

- Pearson's r
- bivariate correlation
- Pearson product-moment correlation coefficient (PPMCC)
cannot determine dependence of variables \& cannot assess
nonlinear associations

r value variation:

-0.1 to -.03 / 0.1 to $0.3=$ weak correlation
-0.3 to -0.5 / 0.3 to $0.5=$ average/moderate correlation
-0.5 to $-1.0 / 0.5$ to $1.0=$ strong correlation
FORMULA:
$r=n\left(\sum x y\right)-(\Sigma x)(\Sigma y) / \sqrt{ }\left[n \Sigma x^{2}-(\Sigma x)^{2}\right]\left[n \Sigma y^{2}-(\Sigma y)^{2}\right]$

Mann-Whitney U test

non-parametric test to test the significance of difference two independently drawn groups OR compare outcomes between two independent groups
equi to unpaired t test
CONDITIONS:
No NPC assumption, small sample size >30 with min 5 in each group, continuous data (able to take any no in range), randomly selected samples,

aka:

Mann-Whitney Test
Wilcoxon Rank Sum test
H0: the two pop are equal
Ha: the two pop are not equal
denoted by U
FORMULA:

Mann-Whitney U test (cont)

$\mathrm{U} 1=\mathrm{n} 1 \mathrm{n} 2+\mathrm{n} 1(\mathrm{n} 1+1) / 2-\mathrm{R} 1$
$\mathrm{U} 2=\mathrm{n} 1 \mathrm{n} 2+\mathrm{n} 2(\mathrm{n} 2+1) / 2-\mathrm{R} 2$
$R=$ sum of ranks of group

One-way ANOVA test

One-way ANOVA test

- $\mathrm{SSB} / \mathrm{SSR}=$ the regression sum of squares
- $\mathrm{SSE}=$ the error sum of squares
- $\mathrm{SST}=$ the total sum of squares (SST $=$ SSR + SSE)
- $\mathrm{dfr}=$ the model degrees of freedom (equal to $\mathrm{dfr}=\mathrm{k}-1$)
- $\mathrm{dfe}=$ the error degrees of freedom (equal to $\mathrm{dfe}=\mathrm{n}-\mathrm{k}$)
- $k=$ the total number of groups (levels of the independent variable)
- $n=$ the total number of observations
- $\mathrm{dft}=$ the total degrees of freedom (equal to $\mathrm{dft}=\mathrm{dfr}+\mathrm{dfe}=\mathrm{n}-1$)

One-way ANOVA test

- $M S R=S S R / d f r=$ the regression mean square
- $\operatorname{MSE}=\mathrm{SSE} / \mathrm{dfe}=$ the mean square error
- Then the F statistic itself is computed as: F=MSR/MSE
- p: The p-value that corresponds to Fdfr, dfe

By SH (Sana_H)
cheatography.com/sana-h/

Published 17th January, 2023.
Last updated 16th January, 2023.
Page 5 of 5 .

Sponsored by Readable.com
Measure your website readability!
https://readable.com

[^0]: Sponsored by Readable.com
 Measure your website readability!
 https://readable.com

