Significant Figures

Significant Figures: Digits in a measurement that can be determined accurately plus one that is estimated and is therefore uncertain.
-All non-zero digits are always significant
$446=$ sig figs
-Zeros:
\#1-Zeros at the beginning of numbers(are never significant)
$=0.678-3$ sig figs
\#2-Zeros b/n non-zero digits are always significant
$=706-3$ sig figs
\#3- Zeros at the end of numbers are only considered sig figs if there is a decimal point in the number or at the end of the number
$=760-2$ sig figs
$=760.0-4 \mathrm{sig}$ figs
Exact Numbers: Numbers that are counted not obtained using measuring devices have infinite sig figs. (Most conversion factors are exact numbers)
Scientific Notation: For values written in
Scientific notation, the digits in the coefficient (numbers without an exponent).
$=1.500^{*} 10^{\wedge} 4-4$ sig figs

Scientific notation in Conversion rules

\#1=Move the decimal point to the position so one non-zero digit is to the left of the decimal point
\#2=If the decimal point is moved to the right, the exponent is positive
\#3=If the decimal point is moved to the left, the exponent is negative

By samywestside

Rounding

Adding,Subtracting, Dividing, Multiplying

Rounding using Sig Figs

-5 or greater will round up to the next digit
-4 or less will be rounded down
$=1234.5$ to 4 sig figs- 1235
Calculating using Sig Figs
Multiplication/Division
\#1 = Answer should have the same number of significant as the measurement with the fewest sig figs
$=1.35^{*} 0.04-0.0536-0.05$ (Least number has 1 sig figs so you round the answer to 1 sig fig)

Addition/Subtraction

\#1=The answer should have the same number of decimal places as the least precise measurement (Look at the place value of the least precise)
$=1.34+2.3=3.64-3.6\left(10^{\text {th }}\right.$ is the least so
answer should only go up to the $10^{\text {th }}$

Density and Percent Error

Density

Mass/Volume= Density
Intensive physical property: Doesn't change with increase in amount.

Volume

Liquids=ml
Solids=cm ${ }^{3}$

Percent error

Quantitative comparison of the experimental value to the correct or accepted value. \% error is negative when experimental is smaller than actual.
\% Error=(Experiment-Actual Value/Actual Value)*100

Published 2nd September, 2015.
Last updated 2nd September, 2015.
Page 1 of 1 .

Sponsored by CrosswordCheats.com
Learn to solve cryptic crosswords!
http://crosswordcheats.com

