

waves Cheat Sheet by sams sub via cheatography.com/167999/cs/35763/

key words		
amplitude	is half of the distance between a waves high point crest and low point trough. Amplitude measures how much a wave is displaced from its resting point.	
wavelength	is measured from a point on one wave to the same point on the next wave and is written as λ (Greek letter for lamba). The difference in colours is caused by different wavelengths of light. Red has the longest wavelength in the rainbow while purple has the shortest	
oscillation	an up-and-down or back-and-forth motion	
vacuum	space that has no matter in it	
frequency	the number of waves that pass a fixed point in a given unit of time is written as ${\bf f}$	
node	the node of a wave is where the wave doesn't move	
antinode	the part of the wave where it moves the most away from the centre	
wave speed	is the speed at which the energy is transferred through the medium	
transverse Wave	are when the oscillations are perpendicular to the direction of the waves advance	
longitudinal wave	are when the displacement is parallel to the direction of the wave	
overtone	generally applied to any higher-frequency standing wave	
fundam- ental	the frequency at which the entire wave vibrates	
stationary waves	when two waves are moving at the same time in opposite directions, both having the same amplitude and frequency	
Displa- cement	how far the quantity that is in oscillation has moved from its mean	
Period	time taken for a wave to pass	
electroma- gnetic	is a continuous range of wavelengths electro contains electric energy magnetic contains magnetic disturbance**	
phase difference	The difference in phase angle of two different waves with the same frequency	

equations	
frequency = 1/time or time = frequency/1	f=1/t or T=f/1
speed= frequency x wavelength	$v=f \times \lambda$
wavespeed = frequency x wavelength	$v=f \times \lambda$

electromagnetic spectrum		
uses	dangers	
Telecommunication, TV, radio	None	
Cooking, telecommunication, RADAR	None	
Heating, cooking, TV remotes, night vision	Can burn	
photography, illumination	erythema, pigmentation, thermal damage, free radical, production	
killing bacteria, creating fluore- scent effects, curing inks and resins, phototherapy, sun tanning, security	skin cancer, premature ageing	
looks at bones	causes cancer	
radio therapy, sterilisation and disinfection, nuclear industry	Causes cancer	
	uses Telecommunication, TV, radio Cooking, telecommunication, RADAR Heating, cooking, TV remotes, night vision photography, illumination killing bacteria, creating fluore- scent effects, curing inks and resins, phototherapy, sun tanning, security looks at bones radio therapy, sterilisation and	

the laws of refraction

Light waves (or electromagnetic radiation of other frequencies) travel best in a vacuum (a space without any matter in it)

When the waves have to travel through solid, opaque materials, their movement IS STOPPED by the electronic charges of the atoms and molecules around them e.g. Metals that are full of freely moving electrons stop the oscillations completely and so the light wave energy is reflected back – metals therefore look shiny and make good mirrors. Some waves are absorbed in solids, with certain waves being reflected back so that we are able to see colours

In transparent materials *(water, glass and many plastics)* the waves are **NOT STOPPED** or **ABSORBED** but they are slowed down

By sams sub cheatography.com/sams-sub/

Published 28th November, 2022. Last updated 5th January, 2023. Page 1 of 2. Sponsored by **ApolloPad.com**Everyone has a novel in them. Finish
Yours!
https://apollopad.com

waves Cheat Sheet by sams sub via cheatography.com/167999/cs/35763/

Diagrams

transverse wave https://i.ytimg.com/vi/-HW8JcL8wms/maxresdefa-ult.jpg

longitudinal wave https://cdn1.byjus.com/wp-content/uploads/2020/0-7/Longitudinal-Waves-1.png

stationary wave https://www.a-levelphysicstutor.com/images/waves/statw-formation.jpg

By sams sub cheatography.com/sams-sub/

Published 28th November, 2022. Last updated 5th January, 2023. Page 2 of 2. Sponsored by **ApolloPad.com**Everyone has a novel in them. Finish
Yours!
https://apollopad.com