\documentclass[10pt,a4paper]{article} % Packages \usepackage{fancyhdr} % For header and footer \usepackage{multicol} % Allows multicols in tables \usepackage{tabularx} % Intelligent column widths \usepackage{tabulary} % Used in header and footer \usepackage{hhline} % Border under tables \usepackage{graphicx} % For images \usepackage{xcolor} % For hex colours %\usepackage[utf8x]{inputenc} % For unicode character support \usepackage[T1]{fontenc} % Without this we get weird character replacements \usepackage{colortbl} % For coloured tables \usepackage{setspace} % For line height \usepackage{lastpage} % Needed for total page number \usepackage{seqsplit} % Splits long words. %\usepackage{opensans} % Can't make this work so far. Shame. Would be lovely. \usepackage[normalem]{ulem} % For underlining links % Most of the following are not required for the majority % of cheat sheets but are needed for some symbol support. \usepackage{amsmath} % Symbols \usepackage{MnSymbol} % Symbols \usepackage{wasysym} % Symbols %\usepackage[english,german,french,spanish,italian]{babel} % Languages % Document Info \author{sams sub} \pdfinfo{ /Title (biology-btec-unit-1.pdf) /Creator (Cheatography) /Author (sams sub) /Subject (biology Btec unit 1 Cheat Sheet) } % Lengths and widths \addtolength{\textwidth}{6cm} \addtolength{\textheight}{-1cm} \addtolength{\hoffset}{-3cm} \addtolength{\voffset}{-2cm} \setlength{\tabcolsep}{0.2cm} % Space between columns \setlength{\headsep}{-12pt} % Reduce space between header and content \setlength{\headheight}{85pt} % If less, LaTeX automatically increases it \renewcommand{\footrulewidth}{0pt} % Remove footer line \renewcommand{\headrulewidth}{0pt} % Remove header line \renewcommand{\seqinsert}{\ifmmode\allowbreak\else\-\fi} % Hyphens in seqsplit % This two commands together give roughly % the right line height in the tables \renewcommand{\arraystretch}{1.3} \onehalfspacing % Commands \newcommand{\SetRowColor}[1]{\noalign{\gdef\RowColorName{#1}}\rowcolor{\RowColorName}} % Shortcut for row colour \newcommand{\mymulticolumn}[3]{\multicolumn{#1}{>{\columncolor{\RowColorName}}#2}{#3}} % For coloured multi-cols \newcolumntype{x}[1]{>{\raggedright}p{#1}} % New column types for ragged-right paragraph columns \newcommand{\tn}{\tabularnewline} % Required as custom column type in use % Font and Colours \definecolor{HeadBackground}{HTML}{333333} \definecolor{FootBackground}{HTML}{666666} \definecolor{TextColor}{HTML}{333333} \definecolor{DarkBackground}{HTML}{8AE3C0} \definecolor{LightBackground}{HTML}{F0FBF7} \renewcommand{\familydefault}{\sfdefault} \color{TextColor} % Header and Footer \pagestyle{fancy} \fancyhead{} % Set header to blank \fancyfoot{} % Set footer to blank \fancyhead[L]{ \noindent \begin{multicols}{3} \begin{tabulary}{5.8cm}{C} \SetRowColor{DarkBackground} \vspace{-7pt} {\parbox{\dimexpr\textwidth-2\fboxsep\relax}{\noindent \hspace*{-6pt}\includegraphics[width=5.8cm]{/web/www.cheatography.com/public/images/cheatography_logo.pdf}} } \end{tabulary} \columnbreak \begin{tabulary}{11cm}{L} \vspace{-2pt}\large{\bf{\textcolor{DarkBackground}{\textrm{biology Btec unit 1 Cheat Sheet}}}} \\ \normalsize{by \textcolor{DarkBackground}{sams sub} via \textcolor{DarkBackground}{\uline{cheatography.com/167999/cs/36364/}}} \end{tabulary} \end{multicols}} \fancyfoot[L]{ \footnotesize \noindent \begin{multicols}{3} \begin{tabulary}{5.8cm}{LL} \SetRowColor{FootBackground} \mymulticolumn{2}{p{5.377cm}}{\bf\textcolor{white}{Cheatographer}} \\ \vspace{-2pt}sams sub \\ \uline{cheatography.com/sams-sub} \\ \end{tabulary} \vfill \columnbreak \begin{tabulary}{5.8cm}{L} \SetRowColor{FootBackground} \mymulticolumn{1}{p{5.377cm}}{\bf\textcolor{white}{Cheat Sheet}} \\ \vspace{-2pt}Not Yet Published.\\ Updated 15th January, 2023.\\ Page {\thepage} of \pageref{LastPage}. \end{tabulary} \vfill \columnbreak \begin{tabulary}{5.8cm}{L} \SetRowColor{FootBackground} \mymulticolumn{1}{p{5.377cm}}{\bf\textcolor{white}{Sponsor}} \\ \SetRowColor{white} \vspace{-5pt} %\includegraphics[width=48px,height=48px]{dave.jpeg} Measure your website readability!\\ www.readability-score.com \end{tabulary} \end{multicols}} \begin{document} \raggedright \raggedcolumns % Set font size to small. Switch to any value % from this page to resize cheat sheet text: % www.emerson.emory.edu/services/latex/latex_169.html \footnotesize % Small font. \begin{multicols*}{4} \begin{tabularx}{3.833cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{3.833cm}}{\bf\textcolor{white}{key words}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{3.833cm}}{{\bf{membrane bound}} - surrounded by a membrane} \tn % Row Count 1 (+ 1) % Row 1 \SetRowColor{white} \mymulticolumn{1}{x{3.833cm}}{{\bf{linear}} - the ends of the DNA molecule is in a chromosome} \tn % Row Count 3 (+ 2) % Row 2 \SetRowColor{LightBackground} \mymulticolumn{1}{x{3.833cm}}{{\bf{nucleus}} - the organelle that contains the cell DNA and the control center of the cell} \tn % Row Count 5 (+ 2) % Row 3 \SetRowColor{white} \mymulticolumn{1}{x{3.833cm}}{{\bf{cytoplasm}} - where metabolic reactions take place} \tn % Row Count 7 (+ 2) % Row 4 \SetRowColor{LightBackground} \mymulticolumn{1}{x{3.833cm}}{{\bf{cell wall}} - protects and supports each cell and the whole plant} \tn % Row Count 9 (+ 2) % Row 5 \SetRowColor{white} \mymulticolumn{1}{x{3.833cm}}{{\bf{lysosomes}} - the organelle that digests food particles, wastes, cell parts, and foreign invaders} \tn % Row Count 11 (+ 2) % Row 6 \SetRowColor{LightBackground} \mymulticolumn{1}{x{3.833cm}}{{\bf{golgi vesicle}} - responsible for transporting, modifying, and packaging proteins and lipids into vesicles to be transported where needed} \tn % Row Count 14 (+ 3) % Row 7 \SetRowColor{white} \mymulticolumn{1}{x{3.833cm}}{{\bf{rough ER}} - has ribosomes attached; it synthesises and transports proteins} \tn % Row Count 16 (+ 2) % Row 8 \SetRowColor{LightBackground} \mymulticolumn{1}{x{3.833cm}}{{\bf{smooth ER}} - flattened cavities surrounded by a thin membrane which do not have anything attached. These synthesise carbohydrates and lipids} \tn % Row Count 19 (+ 3) % Row 9 \SetRowColor{white} \mymulticolumn{1}{x{3.833cm}}{{\bf{cell membrane}} - separates the interior of the cell from the outside environment} \tn % Row Count 21 (+ 2) % Row 10 \SetRowColor{LightBackground} \mymulticolumn{1}{x{3.833cm}}{{\bf{mitochondrion}} - the organelle that breaks down food molecules to make ATP} \tn % Row Count 23 (+ 2) % Row 11 \SetRowColor{white} \mymulticolumn{1}{x{3.833cm}}{{\bf{golgi apparatus}} - here newly made proteins are modified and then packaged into vesicles} \tn % Row Count 25 (+ 2) % Row 12 \SetRowColor{LightBackground} \mymulticolumn{1}{x{3.833cm}}{{\bf{nucleolus}} - dense spherical structure inside the nucleus that produces ribosomes and RNA} \tn % Row Count 27 (+ 2) % Row 13 \SetRowColor{white} \mymulticolumn{1}{x{3.833cm}}{{\bf{centriole}} - take part in cell division} \tn % Row Count 28 (+ 1) % Row 14 \SetRowColor{LightBackground} \mymulticolumn{1}{x{3.833cm}}{{\bf{ribosome}} - the organelle in which amino acids are hooked together to make proteins} \tn % Row Count 30 (+ 2) \end{tabularx} \par\addvspace{1.3em} \vfill \columnbreak \begin{tabularx}{3.833cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{3.833cm}}{\bf\textcolor{white}{key words (cont)}} \tn % Row 15 \SetRowColor{LightBackground} \mymulticolumn{1}{x{3.833cm}}{{\bf{chloroplast}} - the organelle that uses the energy of sunlight to make food} \tn % Row Count 2 (+ 2) % Row 16 \SetRowColor{white} \mymulticolumn{1}{x{3.833cm}}{{\bf{endoplasmic reticulum}} - the organelle that makes lipids, breaks down drugs and other substances, and packages proteins for golgi complex} \tn % Row Count 5 (+ 3) % Row 17 \SetRowColor{LightBackground} \mymulticolumn{1}{x{3.833cm}}{{\bf{golgi complex}} - the organelle that processes and transports proteins and other materials out of the cell} \tn % Row Count 8 (+ 3) % Row 18 \SetRowColor{white} \mymulticolumn{1}{x{3.833cm}}{{\bf{large central vacuole}} - the organelle that stores water and other materials} \tn % Row Count 10 (+ 2) % Row 19 \SetRowColor{LightBackground} \mymulticolumn{1}{x{3.833cm}}{{\bf{pits}} - all water to enter and leave the xylem vessels} \tn % Row Count 12 (+ 2) % Row 20 \SetRowColor{white} \mymulticolumn{1}{x{3.833cm}}{{\bf{vacuole}} - maintains turgor to ensure a rigid frame work in the cell} \tn % Row Count 14 (+ 2) % Row 21 \SetRowColor{LightBackground} \mymulticolumn{1}{x{3.833cm}}{{\bf{vesicle}} - these transport materials around the cell or out the cell} \tn % Row Count 16 (+ 2) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{3.833cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{3.833cm}}{\bf\textcolor{white}{cell theory}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{3.833cm}}{all living things are composed of cells products} \tn % Row Count 1 (+ 1) % Row 1 \SetRowColor{white} \mymulticolumn{1}{x{3.833cm}}{new cells are formed only by the division of pre-existing cells} \tn % Row Count 3 (+ 2) % Row 2 \SetRowColor{LightBackground} \mymulticolumn{1}{x{3.833cm}}{the cell contains inherited information (genes), which is used as instructions for growth, functioning and development} \tn % Row Count 6 (+ 3) % Row 3 \SetRowColor{white} \mymulticolumn{1}{x{3.833cm}}{the is the functioning unit of life; the metabolic reactions of life take place within the cells} \tn % Row Count 8 (+ 2) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{3.833cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{3.833cm}}{\bf\textcolor{white}{Magnification equation triangle}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{3.833cm}}{Image size (I)= actual size (A) x magnification (M)} \tn % Row Count 2 (+ 2) % Row 1 \SetRowColor{white} \mymulticolumn{1}{x{3.833cm}}{Actual size (A) = image size (I) / magnification (M)} \tn % Row Count 4 (+ 2) % Row 2 \SetRowColor{LightBackground} \mymulticolumn{1}{x{3.833cm}}{Magnification (M) = image size (I) / actual size (A)} \tn % Row Count 6 (+ 2) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{3.833cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{3.833cm}}{\bf\textcolor{white}{bacteria cells}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{3.833cm}}{{\bf{{\emph{bacteria cells like many other animals and plants, produce and secrete toxins that have an effect on other organisms}}}}} \tn % Row Count 3 (+ 3) % Row 1 \SetRowColor{white} \mymulticolumn{1}{x{3.833cm}}{DNA is free in the cytoplasm of a prokaryotic cell in the area called the nucleoid} \tn % Row Count 5 (+ 2) % Row 2 \SetRowColor{LightBackground} \mymulticolumn{1}{x{3.833cm}}{A section of DNA containing a genetic code for a metabole unwinds and hydrogen bonds break.} \tn % Row Count 7 (+ 2) % Row 3 \SetRowColor{white} \mymulticolumn{1}{x{3.833cm}}{RNA nucleotides line up (complementary base pairing). Messenger RNA is formed. This process is known an transcription.} \tn % Row Count 10 (+ 3) % Row 4 \SetRowColor{LightBackground} \mymulticolumn{1}{x{3.833cm}}{The next process is the production of the bacterial protein. This is called translation and it occurs at the ribosomes.} \tn % Row Count 13 (+ 3) % Row 5 \SetRowColor{white} \mymulticolumn{1}{x{3.833cm}}{Transcription and translation can occur simultaneously because the genetic material is free in the nucleoid surrounded by ribosomes.} \tn % Row Count 16 (+ 3) % Row 6 \SetRowColor{LightBackground} \mymulticolumn{1}{x{3.833cm}}{The newly made protein toxin is moved to the surface membrane ready to be secreted to cause infection.} \tn % Row Count 19 (+ 3) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{3.833cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{3.833cm}}{\bf\textcolor{white}{red blood cells}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{3.833cm}}{Red blood cells or erythrocytes are a biconcave shape. This increases the surface area to volume ratio of an erythrocyte. They are flexible so that they can squeeze through narrow blood capillaries. Their function is to transport oxygen around the body. In mammals, erythrocytes do not have a nucleus or other organelles. This increases space for the haemoglobin molecules inside the cell that carry oxygen.} \tn % Row Count 9 (+ 9) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{3.833cm}{x{1.7165 cm} x{1.7165 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{3.833cm}}{\bf\textcolor{white}{eukaryotic and prokaryotic}} \tn % Row 0 \SetRowColor{LightBackground} {\bf{eukaryotic}} & {\bf{prokaryotic}} \tn % Row Count 1 (+ 1) % Row 1 \SetRowColor{white} eukaryotic cells make up multicellular cellular organisms such as plants and animals. they are complex cells with a nucleus and membrane-bound organelles & prokaryotic cells are single celled organisms. they are simple structures and do not have a nucleus or any membrane-bound organelles \tn % Row Count 9 (+ 8) % Row 2 \SetRowColor{LightBackground} plants and animals & bacteria \tn % Row Count 10 (+ 1) \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{3.833cm}{x{1.7165 cm} x{1.7165 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{3.833cm}}{\bf\textcolor{white}{Light microscopy vs electron microscopy}} \tn % Row 0 \SetRowColor{LightBackground} {\bf{light microscopy}} & {\bf{electron microscopy}} \tn % Row Count 2 (+ 2) % Row 1 \SetRowColor{white} Light microscopes use visible light and magnifying lenses to observe small objects & They use a beam of electrons in a vacuum with a wavelength less than 1nm to visualise the specimen. \tn % Row Count 7 (+ 5) % Row 2 \SetRowColor{LightBackground} {\bf{Positives}}: can observe sub-cellular structures & {\bf{Positive}}: x500000 magnification, high resolution (0.1nm) electron micrographs produced. \tn % Row Count 12 (+ 5) % Row 3 \SetRowColor{white} {\bf{Limitations}}: lower magnification (x500) and resolution (x200nm) & {\bf{Limitations}}: destroy the sample. \tn % Row Count 16 (+ 4) \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{3.833cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{3.833cm}}{\bf\textcolor{white}{egg cells}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{3.833cm}}{Egg cells, or ova, are the female gametes in animals. An egg cell is one of the largest cells in the human body, and is approximately 0.12 mm in diameter. It contains a nucleus which houses the genetic material. The zona pellucida is the outer protective layer/membrane of the egg. Attached to this is the corona radiata, which consists of two or three layers. Its function is to supply proteins needed by the fertilised egg cell.} \tn % Row Count 9 (+ 9) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{3.833cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{3.833cm}}{\bf\textcolor{white}{white blood cells}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{3.833cm}}{Neutrophils are a type of white blood cell and they play an important role in the immune system. They have multi-lobed nuclei, which enables them to squeeze though small gaps when travelling to the site of infection. The cytoplasm holds lysosomes that contain enzymes that are used to digest pathogens that are ingested by the neutrophil.} \tn % Row Count 7 (+ 7) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{3.833cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{3.833cm}}{\bf\textcolor{white}{root hair cell}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{3.833cm}}{These cells are found at a plants roots, near the growing tip. They have long hair like extensions called root hairs. The root hairs increase the surfae area of the cell o maximise the movement of water and minerals from he soil into the plant root} \tn % Row Count 5 (+ 5) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{3.833cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{3.833cm}}{\bf\textcolor{white}{key functions of a cell}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{3.833cm}}{one of the key functions of a cell is to synthesise proteins for use inside the cell, to lead to cell multiplication and for secretion out of the cell for example, insulin} \tn % Row Count 4 (+ 4) % Row 1 \SetRowColor{white} \mymulticolumn{1}{x{3.833cm}}{proteins are synthesised on ribosomes attached to rough endoplasmic reticulum} \tn % Row Count 6 (+ 2) % Row 2 \SetRowColor{LightBackground} \mymulticolumn{1}{x{3.833cm}}{the newly synthesised proteins are transported through the cisternae of the rough ER and packaged into vesicles} \tn % Row Count 9 (+ 3) % Row 3 \SetRowColor{white} \mymulticolumn{1}{x{3.833cm}}{they are transported to the golgi apparatus, where vesicles fuse with the surface of the golgi apparatus and the apparatus enter} \tn % Row Count 12 (+ 3) % Row 4 \SetRowColor{LightBackground} \mymulticolumn{1}{x{3.833cm}}{it is here that the newly synthesised proteins are modified and then packaged into vesicles. secretory vesicles will transport proteins that are to be released from the cell to the cell surface membrane} \tn % Row Count 17 (+ 5) % Row 5 \SetRowColor{white} \mymulticolumn{1}{x{3.833cm}}{they will fuse with the membrane and release the protein by exocytosis} \tn % Row Count 19 (+ 2) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{3.833cm}{x{1.7165 cm} x{1.7165 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{3.833cm}}{\bf\textcolor{white}{gram staining}} \tn % Row 0 \SetRowColor{LightBackground} {\bf{gram positive}} & {\bf{gram negative}} \tn % Row Count 1 (+ 1) % Row 1 \SetRowColor{white} if you see a purple stain when observing the smar under a microscope it shows that gram-positive bacteria are present & if the smear has retained the pink safranin stain, this shows that gram-negative bacteria are present. this is because their thinner cell walls and lipid membranes allow ethanol (applied during the method) to wash off all the crystal violet purple stain and to then retain the pink safranin stain \tn % Row Count 16 (+ 15) % Row 2 \SetRowColor{LightBackground} doesn' have an outer membra & has an outer membrane \tn % Row Count 18 (+ 2) % Row 3 \SetRowColor{white} \mymulticolumn{2}{x{3.833cm}}{{\bf{P}}ositive {\bf{P}}urple} \tn % Row Count 19 (+ 1) \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{3.833cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{3.833cm}}{\bf\textcolor{white}{squamous epithelial tissue}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{3.833cm}}{{\bf{location}}} \tn % Row Count 1 (+ 1) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{3.833cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{3.833cm}}{\bf\textcolor{white}{sperm cell}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{3.833cm}}{sperm cells are male gametes in animals. They have a tall like structure called a a undulipodium so hey can move. They also contain many mitochondria to supply the energy needed for his movement. The sperm head is 3 μm wide and 4 μm long. it is made up of an acrosome, which contains digestive enzymes . These enzymes are released when the sperm meets the egg, to digest the protective layer and allow the sperm to penetrate. The sperm's function is to deliver genetic information to the egg cell or ovum (female gamete). This is fertilisation} \tn % Row Count 12 (+ 12) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{3.833cm}{p{0.75526 cm} x{2.67774 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{3.833cm}}{\bf\textcolor{white}{Time line about the cell}} \tn % Row 0 \SetRowColor{LightBackground} 1665 & Robert Hooke first described a cell \tn % Row Count 2 (+ 2) % Row 1 \SetRowColor{white} & Anton Van Leeuwenhoek was the person who observed bacteria and protoctists \tn % Row Count 5 (+ 3) % Row 2 \SetRowColor{LightBackground} 1674 - 1683 & The first living cell was observed protoctists from pond water samples, after developing powerful glass lenses \tn % Row Count 9 (+ 4) % Row 3 \SetRowColor{white} 1831 & The nucleus is observed \tn % Row Count 10 (+ 1) % Row 4 \SetRowColor{LightBackground} & Robert Brown an English botanist was the first to observe and describe the nucleus in a plant cell \tn % Row Count 14 (+ 4) % Row 5 \SetRowColor{white} 1674 - 1683 & Universal cell theory \tn % Row Count 16 (+ 2) % Row 6 \SetRowColor{LightBackground} & Matthias Schleiden suggests that all plant material is composed of cells. Jan Purkyne observed that animal tissue is composed of cells and the structure is similar to plant tissue. The scientist credited for the universal cell theory is Theodore Schwann, a German physiologist. He proposed that 'all living things are made of cells'. \tn % Row Count 27 (+ 11) % Row 7 \SetRowColor{white} 1852 & Evidence of the origin of the new cell \tn % Row Count 29 (+ 2) % Row 8 \SetRowColor{LightBackground} & Robert Remak observed cell division in animal cells. His findings were not accepted at the time, but in 1855 Rudolf Virchow published the findings as his own to show new cells form from existing ones \tn % Row Count 36 (+ 7) \end{tabularx} \par\addvspace{1.3em} \vfill \columnbreak \begin{tabularx}{3.833cm}{p{0.75526 cm} x{2.67774 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{3.833cm}}{\bf\textcolor{white}{Time line about the cell (cont)}} \tn % Row 9 \SetRowColor{LightBackground} 1860 & Spontaneous generation disproved \tn % Row Count 2 (+ 2) % Row 10 \SetRowColor{white} & Louis Pasteur demonstrated that bacteria will only grow sterile nutrient broth after it has been exposed to air. This disproved the theory of spontaneous generation of cells. \tn % Row Count 8 (+ 6) \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} % That's all folks \end{multicols*} \end{document}