

Metabolism/Biotransformation Cheat Sheet by sam219 via cheatography.com/201893/cs/45383/

Phae 1: Functionalization reactions					
Oxidative pathways	Reduction	Hydrolytic reactions			
1. Alcohols & Aldehydes	1. Aldehydes	1. Esters			
Ex: pyridoxine becoming pyridoxal	Become alcohols from H addition.	Ex: Cocaine, Aspirin, Mepiridine, Procaine			
Aliphatic hydroxylation: addition of OH.	2. Azo-reduction	The ester (COO) gp becomes an acid.			
2. Oxidative N-demethylation	Ex: Sulfasalazine> Sulfap-yridine	2. Amides			
Ex: Methamphetamine, Lidocaine, Epinephrine	3. Nitroreduction	Ex: Procainamide			
N with a CH3 (or other) get replaced by =O	Ex: Nitrazepam, Chloramphenicol	3. Glycosides			
3. Oxidative deamination	NO2 becomes NH2.	Ex: Digoxin> Digoxin aglycone			
Ex: Norepinephrine, Histamine, Mescaline	4. Dehalogenation	4. Epoxides			
Removal of NH2 and its release as ammonia gas. Gets replaced by =O.	Ex: Halothane, Ethchlovynol	Ex: DES metabolite> DES			
4. Oxidative O-dealkylation					
Ex: Phenacetin, Codeine, Mescaline, Papaverine					
O-alkyl becomes -OH.					
5. N-Oxidation					
Ex: Imipramine.					
Coordinate bond between tert-N and O.					
6.	S-Oxidation				
Ex: Chlorpromazine; S-O (sulfoxide) then becomes (S=O) Sulfone.					
7. Desulfuration					
Ex: Thiobarbital, Parathion					
=S is replaced by =O					
8.	Epoxidation				

Ex: DES; O in a strained tricyclic structure.

Phase 1: Functionalisation cont.		
Decarboxylation	Oxidative pathways catalysed by other oxidoreductases	Reductive pathways by oxidoreductases
Ex: Histidine, a-methyldopa, L-Dopa.	Alcohol dehydrogenases	Less significant
Removal of carboxylic acid.	1ry alcohol (benzylalcohol, phenethanol, retino- l)> Aldehydes	Include reactions on:
Histidine> Histamine; L-Dopa> dopamine.	2ry alcohols> Ketones	1) C=O compounds 2) Olefins 3) Dehalogenation 4) other atoms
	3ry alcohols do not react.	Hydrolytic pathways
	Aldehyde dehydrogenases	include hydrolyses enzymes

By sam219 cheatography.com/sam219/

Not published yet. Last updated 15th January, 2025. Page 1 of 2. Sponsored by **Readable.com**Measure your website readability!
https://readable.com

Metabolism/Biotransformation Cheat Sheet by sam219 via cheatography.com/201893/cs/45383/

Phase 1: Functionalisation cont. (cont)

Aldehydes--> Acid They add a water to functional groups.

Monoamine oxidase (MAO)

Has 2 forms/isozymes A & B, that deaminate catecholamines.

Treats Parkinson's (esp MAO B).

Phase 2: conjugation reaction				
Methylation	Acetylation & Acylation	Amino acid conjugation reactions		
A methyl group on carrier (SAM) adds the methyl to O/N/S on the drug or phase 1 metabolite.	Acyl-coenzyme A is required	Glycine is used to conjugate COOH gp in xenobiotics.		
O-methylation by COMT.	Ex: Sulfamethoxazole where COCH3 gp is added.	Carrier is glycine N-acyltransferase.		
N-methylation by N-methyltransferase.	Some people are fast or slow acety here should be adjusted.	vlators and thus drug dose metabolized		
0 0 10 1 0 1 0 1 0 1 0 1				

S-methylation by thiol or thiopurine methyltransferases.

Thiol containing drugs (captopril, mercaptopurine, propylthiouracil) are subjected to S-methylation.

Captopril is unique in that phase 2 S-methylation occurs first, then phase 1.

Phase 2: conjugation reaction cont.					
Glucuronidation	Sulfate conjugation	Glutathione (GSH) conjugation	Miscellaneous conjugation reactions		
Conjugation with glucuronic acid with carrier UDPG.	A sulfate molecule is transferred from carrier, PAPS, to the substrate/drug by enzyme cytosolic sulfotransferases.	In its reduced form, its the tripeptide GSH. But it becomes in the oxidized form GS-SG and the SG attachs to drug	Phosphorylation via phosphotransferase		
The enzyme, UDP-gluco- uronosyl transferase, acts on O, N, S in the compound.			Ex: Zidovudine.		
			2) Endogenous carbonyl + Exogenous drug with hydrazines or hydrazides> Hydrazones.		

By sam219 cheatography.com/sam219/

Not published yet. Last updated 15th January, 2025. Page 2 of 2. Sponsored by **Readable.com**Measure your website readability!
https://readable.com