\documentclass[10pt,a4paper]{article} % Packages \usepackage{fancyhdr} % For header and footer \usepackage{multicol} % Allows multicols in tables \usepackage{tabularx} % Intelligent column widths \usepackage{tabulary} % Used in header and footer \usepackage{hhline} % Border under tables \usepackage{graphicx} % For images \usepackage{xcolor} % For hex colours %\usepackage[utf8x]{inputenc} % For unicode character support \usepackage[T1]{fontenc} % Without this we get weird character replacements \usepackage{colortbl} % For coloured tables \usepackage{setspace} % For line height \usepackage{lastpage} % Needed for total page number \usepackage{seqsplit} % Splits long words. %\usepackage{opensans} % Can't make this work so far. Shame. Would be lovely. \usepackage[normalem]{ulem} % For underlining links % Most of the following are not required for the majority % of cheat sheets but are needed for some symbol support. \usepackage{amsmath} % Symbols \usepackage{MnSymbol} % Symbols \usepackage{wasysym} % Symbols %\usepackage[english,german,french,spanish,italian]{babel} % Languages % Document Info \author{Soul (sakiSoul)} \pdfinfo{ /Title (aqa-alevel-chemistry.pdf) /Creator (Cheatography) /Author (Soul (sakiSoul)) /Subject (aqa alevel chemistry Cheat Sheet) } % Lengths and widths \addtolength{\textwidth}{6cm} \addtolength{\textheight}{-1cm} \addtolength{\hoffset}{-3cm} \addtolength{\voffset}{-2cm} \setlength{\tabcolsep}{0.2cm} % Space between columns \setlength{\headsep}{-12pt} % Reduce space between header and content \setlength{\headheight}{85pt} % If less, LaTeX automatically increases it \renewcommand{\footrulewidth}{0pt} % Remove footer line \renewcommand{\headrulewidth}{0pt} % Remove header line \renewcommand{\seqinsert}{\ifmmode\allowbreak\else\-\fi} % Hyphens in seqsplit % This two commands together give roughly % the right line height in the tables \renewcommand{\arraystretch}{1.3} \onehalfspacing % Commands \newcommand{\SetRowColor}[1]{\noalign{\gdef\RowColorName{#1}}\rowcolor{\RowColorName}} % Shortcut for row colour \newcommand{\mymulticolumn}[3]{\multicolumn{#1}{>{\columncolor{\RowColorName}}#2}{#3}} % For coloured multi-cols \newcolumntype{x}[1]{>{\raggedright}p{#1}} % New column types for ragged-right paragraph columns \newcommand{\tn}{\tabularnewline} % Required as custom column type in use % Font and Colours \definecolor{HeadBackground}{HTML}{333333} \definecolor{FootBackground}{HTML}{666666} \definecolor{TextColor}{HTML}{333333} \definecolor{DarkBackground}{HTML}{792A9C} \definecolor{LightBackground}{HTML}{F6F1F8} \renewcommand{\familydefault}{\sfdefault} \color{TextColor} % Header and Footer \pagestyle{fancy} \fancyhead{} % Set header to blank \fancyfoot{} % Set footer to blank \fancyhead[L]{ \noindent \begin{multicols}{3} \begin{tabulary}{5.8cm}{C} \SetRowColor{DarkBackground} \vspace{-7pt} {\parbox{\dimexpr\textwidth-2\fboxsep\relax}{\noindent \hspace*{-6pt}\includegraphics[width=5.8cm]{/web/www.cheatography.com/public/images/cheatography_logo.pdf}} } \end{tabulary} \columnbreak \begin{tabulary}{11cm}{L} \vspace{-2pt}\large{\bf{\textcolor{DarkBackground}{\textrm{aqa alevel chemistry Cheat Sheet}}}} \\ \normalsize{by \textcolor{DarkBackground}{Soul (sakiSoul)} via \textcolor{DarkBackground}{\uline{cheatography.com/177677/cs/37080/}}} \end{tabulary} \end{multicols}} \fancyfoot[L]{ \footnotesize \noindent \begin{multicols}{3} \begin{tabulary}{5.8cm}{LL} \SetRowColor{FootBackground} \mymulticolumn{2}{p{5.377cm}}{\bf\textcolor{white}{Cheatographer}} \\ \vspace{-2pt}Soul (sakiSoul) \\ \uline{cheatography.com/sakisoul} \\ \end{tabulary} \vfill \columnbreak \begin{tabulary}{5.8cm}{L} \SetRowColor{FootBackground} \mymulticolumn{1}{p{5.377cm}}{\bf\textcolor{white}{Cheat Sheet}} \\ \vspace{-2pt}Not Yet Published.\\ Updated 3rd March, 2023.\\ Page {\thepage} of \pageref{LastPage}. \end{tabulary} \vfill \columnbreak \begin{tabulary}{5.8cm}{L} \SetRowColor{FootBackground} \mymulticolumn{1}{p{5.377cm}}{\bf\textcolor{white}{Sponsor}} \\ \SetRowColor{white} \vspace{-5pt} %\includegraphics[width=48px,height=48px]{dave.jpeg} Measure your website readability!\\ www.readability-score.com \end{tabulary} \end{multicols}} \begin{document} \raggedright \raggedcolumns % Set font size to small. Switch to any value % from this page to resize cheat sheet text: % www.emerson.emory.edu/services/latex/latex_169.html \footnotesize % Small font. \begin{multicols*}{2} \begin{tabularx}{8.4cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{8.4cm}}{\bf\textcolor{white}{{\bf{3.1 Physical Chemistry}}}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{8.4cm}}{} \tn % Row Count 0 (+ 0) \hhline{>{\arrayrulecolor{DarkBackground}}-} \SetRowColor{LightBackground} \mymulticolumn{1}{x{8.4cm}}{includes: \newline - atomic structure \newline - amount of substance \newline - structure and bonding \newline - energetics \newline - kinetics \newline - equilibria \newline - redox \newline {\emph{(the following are A2 only)}} \newline - thermodynamics \newline - rate equations \newline - Kp \newline - electrode potentials \newline - acids and bases} \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{8.4cm}{x{5.52 cm} x{2.48 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{8.4cm}}{\bf\textcolor{white}{3.1.1 Atomic Structure}} \tn % Row 0 \SetRowColor{LightBackground} Section: & Completed? \tn % Row Count 1 (+ 1) % Row 1 \SetRowColor{white} fundamental particles & yes \tn % Row Count 2 (+ 1) % Row 2 \SetRowColor{LightBackground} mass number, isotopes & no \tn % Row Count 3 (+ 1) % Row 3 \SetRowColor{white} electron configuration & yes \tn % Row Count 4 (+ 1) \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{8.4cm}{x{3.6 cm} x{4.4 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{8.4cm}}{\bf\textcolor{white}{Fundamental Particles}} \tn % Row 0 \SetRowColor{LightBackground} plum pudding model & a sphere of positive charge with balls of negative charge embedded within: essentially looks like a plum pudding \tn % Row Count 6 (+ 6) % Row 1 \SetRowColor{white} electron shell model & small, dense positive charged nucleus with protons and neutrons; electrons orbit in shells \tn % Row Count 11 (+ 5) % Row 2 \SetRowColor{LightBackground} Rutherford's gold foil experiment & (Geiger-Marsdon experiment) \tn % Row Count 13 (+ 2) % Row 3 \SetRowColor{white} & shot alpha particles through thin gold foil \tn % Row Count 15 (+ 2) % Row 4 \SetRowColor{LightBackground} & - vast majority pass through \tn % Row Count 17 (+ 2) % Row 5 \SetRowColor{white} & - few deflected by large angles \tn % Row Count 19 (+ 2) % Row 6 \SetRowColor{LightBackground} & - \textasciitilde{}1/10000 deflected back to side it came from \tn % Row Count 22 (+ 3) % Row 7 \SetRowColor{white} \mymulticolumn{2}{x{8.4cm}}{Rutherford's conclusions} \tn % Row Count 23 (+ 1) % Row 8 \SetRowColor{LightBackground} & - nucleus is small, positive, dense, massive (heavy) \tn % Row Count 26 (+ 3) % Row 9 \SetRowColor{white} & - most of the atom is empty space \tn % Row Count 28 (+ 2) % Row 10 \SetRowColor{LightBackground} relative mass & proton/neutron = 1; electron = 1/1840 \tn % Row Count 30 (+ 2) \end{tabularx} \par\addvspace{1.3em} \vfill \columnbreak \begin{tabularx}{8.4cm}{x{3.6 cm} x{4.4 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{8.4cm}}{\bf\textcolor{white}{Fundamental Particles (cont)}} \tn % Row 11 \SetRowColor{LightBackground} relative charge & proton = +1; neutron = 0; electron = -1 \tn % Row Count 2 (+ 2) \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{8.4cm}{x{3.76 cm} x{4.24 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{8.4cm}}{\bf\textcolor{white}{Electron Configuration (1.1)}} \tn % Row 0 \SetRowColor{LightBackground} four atomic orbitals & s, p, d, f \tn % Row Count 2 (+ 2) % Row 1 \SetRowColor{white} & s orbitals are spherical \tn % Row Count 4 (+ 2) % Row 2 \SetRowColor{LightBackground} & p orbitals are dumbell shaped \tn % Row Count 6 (+ 2) % Row 3 \SetRowColor{white} & (go practice some of \{\{link="https://www.google.com/url?sa=t\&source=web\&rct=j\&url=https://www.lcps.org/cms/lib4/VA01000195/Centricity/Domain/12702/ELECTRON\%2520CONFIG\%2520WS.pdf\&ved=2ahUKEwizi86mqMD9AhWEYsAKHUtoDP8QFnoECEYQAQ\&usg=AOvVaw0uqHE0bws8EK9\_ZLKBMRYj"\}\}these questions\{\{/link\}\} on paper) \tn % Row Count 21 (+ 15) % Row 4 \SetRowColor{LightBackground} spin & electrons in same orbital have opposite spin \tn % Row Count 24 (+ 3) % Row 5 \SetRowColor{white} first ionisation energy & {\emph{energy required to remove 1mol of electrons from 1mol of gaseous atoms}} \tn % Row Count 28 (+ 4) % Row 6 \SetRowColor{LightBackground} & always refer to "1 mole" \tn % Row Count 30 (+ 2) \end{tabularx} \par\addvspace{1.3em} \vfill \columnbreak \begin{tabularx}{8.4cm}{x{3.76 cm} x{4.24 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{8.4cm}}{\bf\textcolor{white}{Electron Configuration (1.1) (cont)}} \tn % Row 7 \SetRowColor{LightBackground} & lower ionisation energy = easier to form ion \tn % Row Count 3 (+ 3) % Row 8 \SetRowColor{white} general equation (ionisation energy) & X₍₉₎ -{}-\textgreater{} X\textasciicircum{}+\textasciicircum{}₍₉₎ + e¯ \tn % Row Count 5 (+ 2) % Row 9 \SetRowColor{LightBackground} & state symbols are important!! \tn % Row Count 7 (+ 2) % Row 10 \SetRowColor{white} \mymulticolumn{2}{x{8.4cm}}{{\bf{factors affecting ionisation energy:}}} \tn % Row Count 8 (+ 1) % Row 11 \SetRowColor{LightBackground} \textgreater{} nuclear charge & more protons = more positively charged = stronger e¯ attraction = higher ionisation energy \tn % Row Count 13 (+ 5) % Row 12 \SetRowColor{white} \textgreater{} distance from nucleus & e¯ closer to nucleus = stronger attraction = higher ionisation energy \tn % Row Count 17 (+ 4) % Row 13 \SetRowColor{LightBackground} \textgreater{} shielding & higher num orbitals between nucleus and outer e¯ = weaker attraction = lower ionisation energy \tn % Row Count 22 (+ 5) % Row 14 \SetRowColor{white} \mymulticolumn{2}{x{8.4cm}}{{\bf{trends in ionisation energy}}} \tn % Row Count 23 (+ 1) % Row 15 \SetRowColor{LightBackground} down a group: & decreases \tn % Row Count 24 (+ 1) % Row 16 \SetRowColor{white} & \textgreater{} each element down a group has an extra e¯ shell \tn % Row Count 27 (+ 3) % Row 17 \SetRowColor{LightBackground} & - extra inner shells shield outer e¯ from attraction to nucleus \tn % Row Count 31 (+ 4) \end{tabularx} \par\addvspace{1.3em} \vfill \columnbreak \begin{tabularx}{8.4cm}{x{3.76 cm} x{4.24 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{8.4cm}}{\bf\textcolor{white}{Electron Configuration (1.1) (cont)}} \tn % Row 18 \SetRowColor{LightBackground} & - extra shells also mean outer e¯ are further from nucleus \tn % Row Count 3 (+ 3) % Row 19 \SetRowColor{white} across a period & generally increases \tn % Row Count 4 (+ 1) % Row 20 \SetRowColor{LightBackground} & \textgreater{} proton num increasing \tn % Row Count 6 (+ 2) % Row 21 \SetRowColor{white} & - which means there's a stronger nuclear attraction \tn % Row Count 9 (+ 3) % Row 22 \SetRowColor{LightBackground} & \textgreater{} little extra shielding or nuclear distance \tn % Row Count 12 (+ 3) % Row 23 \SetRowColor{white} & - as all elements across period have same number of shells \tn % Row Count 15 (+ 3) % Row 24 \SetRowColor{LightBackground} (across a period cont) & focusing on period three elements \tn % Row Count 17 (+ 2) % Row 25 \SetRowColor{white} dip between group 2 and 3 & ie between Mg and Al \tn % Row Count 19 (+ 2) % Row 26 \SetRowColor{LightBackground} & Mg is 1s$^{\textrm{2}}$ 2s$^{\textrm{2}}$ 2p$^{\textrm{6}}$ 3s$^{\textrm{2}}$ \tn % Row Count 21 (+ 2) % Row 27 \SetRowColor{white} & Al is 1s$^{\textrm{2}}$ 2s$^{\textrm{2}}$ 2p$^{\textrm{6}}$ 3s$^{\textrm{2}}$ 3p$^{\textrm{1}}$ \tn % Row Count 23 (+ 2) % Row 28 \SetRowColor{LightBackground} & Al outer e¯ is in 3p orbital \tn % Row Count 25 (+ 2) % Row 29 \SetRowColor{white} & - 3p has a slightly higher energy level so is slightly further from nucleus \tn % Row Count 29 (+ 4) % Row 30 \SetRowColor{LightBackground} & - shielded by 3s orbital \tn % Row Count 31 (+ 2) \end{tabularx} \par\addvspace{1.3em} \vfill \columnbreak \begin{tabularx}{8.4cm}{x{3.76 cm} x{4.24 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{8.4cm}}{\bf\textcolor{white}{Electron Configuration (1.1) (cont)}} \tn % Row 31 \SetRowColor{LightBackground} & so ionisation energy drops slightly \tn % Row Count 2 (+ 2) % Row 32 \SetRowColor{white} & provides evidence for electron subshell theory \tn % Row Count 5 (+ 3) % Row 33 \SetRowColor{LightBackground} dip between group 5 and 6 & ie P and S \tn % Row Count 7 (+ 2) % Row 34 \SetRowColor{white} & P is 1s$^{\textrm{2}}$ 2s$^{\textrm{2}}$ 2p$^{\textrm{6}}$ 3s$^{\textrm{2}}$ 3p$^{\textrm{3}}$ \tn % Row Count 9 (+ 2) % Row 35 \SetRowColor{LightBackground} & S is 1s$^{\textrm{2}}$ 2s$^{\textrm{2}}$ 2p$^{\textrm{6}}$ 3s$^{\textrm{2}}$ 3p$^{\textrm{4}}$ \tn % Row Count 11 (+ 2) % Row 36 \SetRowColor{white} & e¯ from S is being removed from orbital with two e¯ \tn % Row Count 14 (+ 3) % Row 37 \SetRowColor{LightBackground} & repulsion between e¯ in same orbital means e¯ are easier to remove \tn % Row Count 18 (+ 4) % Row 38 \SetRowColor{white} & (P has single occupied orbital so no added repulsion) \tn % Row Count 21 (+ 3) \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{8.4cm}{p{0.8 cm} p{0.8 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{8.4cm}}{\bf\textcolor{white}{equations and associated calculations}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{2}{x{8.4cm}}{} \tn % Row Count 0 (+ 0) \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{8.4cm}{x{2.4 cm} x{5.6 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{8.4cm}}{\bf\textcolor{white}{Mass num, Isotopes (1.1)}} \tn % Row 0 \SetRowColor{LightBackground} mass num (A) = & num protons + num neutrons \tn % Row Count 2 (+ 2) % Row 1 \SetRowColor{white} atomic num (Z) = & num protons \tn % Row Count 4 (+ 2) % Row 2 \SetRowColor{LightBackground} isotope & atom with same number of protons but a different number of neutrons \tn % Row Count 7 (+ 3) % Row 3 \SetRowColor{white} \mymulticolumn{2}{x{8.4cm}}{{\bf{mass spectrometry}}} \tn % Row Count 8 (+ 1) % Row 4 \SetRowColor{LightBackground} \mymulticolumn{2}{x{8.4cm}}{stage 1: ionisation} \tn % Row Count 9 (+ 1) % Row 5 \SetRowColor{white} & the sample can be ionised by either {\emph{electrospray}} or {\emph{electron impact}} \tn % Row Count 12 (+ 3) % Row 6 \SetRowColor{LightBackground} {\emph{electrospray}} & Sample (X) is dissolved in violent solvent; injected through a hypodermic needle to produce a fine mist; tip of needle is attached to positive terminal of high voltage power supply; ionised by gaining a proton; solvent evaporates; XH+ ions attracted to negative plate - accelerated \tn % Row Count 23 (+ 11) % Row 7 \SetRowColor{white} {\emph{electron impact}} & sample (X) is vaporised; high energy electron fired from electron gun - knocks off one outer shell electron from each particle; 1+ ions attracted to negative plate - accelerated \tn % Row Count 30 (+ 7) \end{tabularx} \par\addvspace{1.3em} \vfill \columnbreak \begin{tabularx}{8.4cm}{x{2.4 cm} x{5.6 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{8.4cm}}{\bf\textcolor{white}{Mass num, Isotopes (1.1) (cont)}} \tn % Row 8 \SetRowColor{LightBackground} \mymulticolumn{2}{x{8.4cm}}{stage 2: acceleration} \tn % Row Count 1 (+ 1) % Row 9 \SetRowColor{white} & positive ions accelerated using electric field so all ions have the same kinetic energy (Ek) \tn % Row Count 5 (+ 4) % Row 10 \SetRowColor{LightBackground} & Ek = $\frac{1}{2}$mv\textasciicircum{}2\textasciicircum{} (Ek = $\frac{1}{2}$ * mass * velocity\textasciicircum{}2\textasciicircum{}) \tn % Row Count 7 (+ 2) % Row 11 \SetRowColor{white} & lighter ion = higher velocity \tn % Row Count 9 (+ 2) % Row 12 \SetRowColor{LightBackground} \mymulticolumn{2}{x{8.4cm}}{stage 3: flight tube (drift region)} \tn % Row Count 10 (+ 1) % Row 13 \SetRowColor{white} & lighter ions move faster than heavier ones (Ek is the same) \tn % Row Count 13 (+ 3) % Row 14 \SetRowColor{LightBackground} & lighter ions reach the detector first \tn % Row Count 15 (+ 2) % Row 15 \SetRowColor{white} & s = vt (distance = velocity * time) \tn % Row Count 17 (+ 2) % Row 16 \SetRowColor{LightBackground} \mymulticolumn{2}{x{8.4cm}}{stage 4: detection} \tn % Row Count 18 (+ 1) % Row 17 \SetRowColor{white} & positive ion hits negatively charged plate \tn % Row Count 20 (+ 2) % Row 18 \SetRowColor{LightBackground} & ion gains an electron \tn % Row Count 21 (+ 1) % Row 19 \SetRowColor{white} \mymulticolumn{2}{x{8.4cm}}{why use mass spec?} \tn % Row Count 22 (+ 1) \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{8.4cm}{x{2.96 cm} x{5.04 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{8.4cm}}{\bf\textcolor{white}{moles, Avagadro const}} \tn % Row 0 \SetRowColor{LightBackground} Avogadro constant & number of particles in a mole \tn % Row Count 2 (+ 2) \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{8.4cm}{x{2.4 cm} x{5.6 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{8.4cm}}{\bf\textcolor{white}{empirical and molecular formula}} \tn % Row 0 \SetRowColor{LightBackground} empirical formula & simplest whole number ratio of atoms of each element in a compound \tn % Row Count 3 (+ 3) % Row 1 \SetRowColor{white} molecular formula & actual number of atoms of each element in a compound \tn % Row Count 5 (+ 2) \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{8.4cm}{x{6.32 cm} x{1.68 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{8.4cm}}{\bf\textcolor{white}{3.1.2 Amount of Substance}} \tn % Row 0 \SetRowColor{LightBackground} Section: & \seqsplit{Completed}? \tn % Row Count 2 (+ 2) % Row 1 \SetRowColor{white} Mr, Ar & yes \tn % Row Count 3 (+ 1) % Row 2 \SetRowColor{LightBackground} moles, Avogadro const & no \tn % Row Count 4 (+ 1) % Row 3 \SetRowColor{white} ideal gas equation & no \tn % Row Count 5 (+ 1) % Row 4 \SetRowColor{LightBackground} empirical and molecular formula & no \tn % Row Count 6 (+ 1) % Row 5 \SetRowColor{white} equations and associated calculations & no \tn % Row Count 8 (+ 2) \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{8.4cm}{x{3.28 cm} x{4.72 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{8.4cm}}{\bf\textcolor{white}{Ar, Mr (1.2)}} \tn % Row 0 \SetRowColor{LightBackground} relative atomic mass (Ar) & mean mass of an atom of an element divided by $^{\textrm{1}}$⁄₁₂ mean mass of atom of C\textasciicircum{}12\textasciicircum{} isotope \tn % Row Count 4 (+ 4) % Row 1 \SetRowColor{white} relative molecular mass (Mr) & mean mass of molecule of a compound divided by $^{\textrm{1}}$⁄₁₂ of mean mass of an atom of C\textasciicircum{}12\textasciicircum{} \tn % Row Count 8 (+ 4) % Row 2 \SetRowColor{LightBackground} & known as relative formula mass for ionic compounds \tn % Row Count 11 (+ 3) \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{8.4cm}{x{4.24 cm} x{3.76 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{8.4cm}}{\bf\textcolor{white}{ideal gas equation}} \tn % Row 0 \SetRowColor{LightBackground} equation: & pV = nRT \tn % Row Count 1 (+ 1) \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{8.4cm}{x{6 cm} x{2 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{8.4cm}}{\bf\textcolor{white}{3.1.3 bonding}} \tn % Row 0 \SetRowColor{LightBackground} Section: & \seqsplit{Completed?} \tn % Row Count 1 (+ 1) % Row 1 \SetRowColor{white} ionic & no \tn % Row Count 2 (+ 1) % Row 2 \SetRowColor{LightBackground} covalent, dative covalent & no \tn % Row Count 3 (+ 1) % Row 3 \SetRowColor{white} metallic & no \tn % Row Count 4 (+ 1) % Row 4 \SetRowColor{LightBackground} physical properties & no \tn % Row Count 5 (+ 1) % Row 5 \SetRowColor{white} shapes of molecules and ions & no \tn % Row Count 6 (+ 1) % Row 6 \SetRowColor{LightBackground} bond polarity & no \tn % Row Count 7 (+ 1) % Row 7 \SetRowColor{white} forces between molecules (imf) & no \tn % Row Count 8 (+ 1) \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} % That's all folks \end{multicols*} \end{document}