3.1 Physical Chemistry

includes:

- atomic structure
- amount of substance
- structure and bonding
- energetics
- kinetics
- equilibria
- redox

(the following are A2 only)

- thermodynamics
- rate equations
- Kp
- electrode potentials
- acids and bases

3 1 1 Atomic Structu

Section:	Completed?
fundamental particles	yes
mass number, isotopes	no
electron configuration	yes

Fundamental Particles				
plum pudding model	a sphere of positive charge with balls of negative charge embedded within: essentially looks like a plum pudding			
electron shell model	small, dense positive charged nucleus with protons and neutrons; electrons orbit in shells			
Rutherford's gold foil experiment	(Geiger-Marsdon experiment)			
	shot alpha particles through thin gold foil			
	- vast majority pass through			
	- few deflected by large angles			
	- ~1/10000 deflected back to side it came from			
Rutherford's conclusions				
	- nucleus is small, positive, dense, massive (heavy			
	- most of the atom is empty space			
relative mass	proton/neutron = 1; electron = 1/1840			
relative	proton = +1; neutron = 0; electron = -1			

Electron Configuration (1.1)						
four atomic orbitals	s, p, d, f					
	s orbitals are spherical					
	p orbitals are dumbell shaped					
	(go practice some of these questions on paper)					
spin	electrons in same orbital have opposite spin					
first ionisation energy	energy required to remove 1mol of electrons from 1mol of gaseous atoms					
	always refer to "1 mole"					
	lower ionisation energy = easier to form ion					
general equation (ionisation energy)	X ₍₉₎ > X ⁺ ₍₉₎ + e ⁻					
	state symbols are important!!					
factors affecting ion	isation energy:					
> nuclear charge	more protons = more positively charged = stronger e ⁻ attraction = higher ionisation energy					
> distance from nucleus	e ⁻ closer to nucleus = stronger attraction = higher ionisation energy					
> shielding	higher num orbitals between nucleus and outer e ⁻ = weaker attraction = lower ionisation energy					
trends in ionisation energy						
down a group:	decreases					
	> each element down a group has an extra e ⁻ shell					

charge

By **Soul** (sakiSoul) cheatography.com/sakisoul/

Not published yet. Last updated 3rd March, 2023. Page 2 of 3. Sponsored by **Readable.com** Measure your website readability! https://readable.com

Cheatography

aqa alevel chemistry Cheat Sheet by Soul (sakiSoul) via cheatography.com/177677/cs/37080/

Electron Configura	ation (1.1) (cont)	Electron	Configuration (1.1) (cont)		
	- extra inner shells shield outer e from attraction	e ⁻ from S is being removed from orbital with two e ⁻ repulsion between e ⁻ in same orbital means e ⁻ are easier to			
	to nucleus				
	- extra shells also mean outer e are further	remove			
	from nucleus	(P has s	(P has single occupied orbital so no added repulsion)		
across a period	generally increases				
	> proton num increasing	equations			
	 which means there's a stronger nuclear attraction 	Massau			
	> little extra shielding or nuclear distance	mass nur	m, isotopes (1.1)		
	- as all elements across period have same number of shells	mass num (A) =	num protons + num neutrons		
(across a period cont)	focusing on period three elements	atomic num (Z)	num protons		
dip between group 2 and 3	ie between Mg and Al	=			
	Mg is 1s² 2s² 2p ⁶ 3s²	Isotope	of neutrons		
	Al is 1s ² 2s ² 2p ⁶ 3s ² 3p ¹	mass spe	ectrometry		
	Al outer e ⁻ is in 3p orbital	stage 1: i	ionisation		
	 3p has a slightly higher energy level so is slightly further from nucleus 		the sample can be ionised by either <i>electrospray</i> or <i>electron impact</i>		
	- shielded by 3s orbital	electr-	Sample (X) is dissolved in violent solvent; injected		
	so ionisation energy drops slightly	ospray	through a hypodermic needle to produce a fine mist; tip of		
	provides evidence for electron subshell theory		needle is attached to positive terminal of high voltage		
dip between group 5 and 6	ie P and S		power supply; ionised by gaining a proton; solvent evaporates; XH+ ions attracted to negative plate - accele-		
	P is 1s ² 2s ² 2p ⁶ 3s ² 3p ³	- 1 1	rated		
	S is 1s² 2s² 2p⁴ 3s² 3p⁴	electron impact	sample (X) is vaporised; high energy electron fired from electron gun - knocks off one outer shell electron from		
		impaol	each particle; 1+ ions attracted to negative plate - accele-		
			rated		
		stage 2: a	acceleration		
		-			

C

By **Soul** (sakiSoul) cheatography.com/sakisoul/

Not published yet. Last updated 3rd March, 2023. Page 3 of 3. Sponsored by Readable.com

Measure your website readability! https://readable.com

Cheatography

aqa alevel chemistry Cheat Sheet by Soul (sakiSoul) via cheatography.com/177677/cs/37080/

Mass num, Isotopes (1.1) (cont)		Ar, Mr (1.2)			
positive ions accelerated using electric field so all i	ions have the	relative atomic mean mass of an atom of an element divid		ement divided by	
same kinetic energy (Ek)		mass (Ar) $\frac{1}{12}$ mean mass of atom of C ¹² isoto		sotope	
$Ek = \frac{1}{2}mv^2$ ($Ek = \frac{1}{2} * mass * velocity^2$)		relative	mean mass of mo	ass of molecule of a compound divided by	
lighter ion = higher velocity		molecular	¹ ⁄ ₁₂ of mean mass	of an atom of	C ¹²
stage 3: flight tube (drift region)		mass (IVII)		<i>c</i> ,	
lighter ions move faster than heavier ones (Ek is the same)		known as relative formula mass for ionic		for ionic	
lighter ions reach the detector first			compoundo		
s = vt (distance = velocity * time)		ideal gas equation	n		
stage 4: detection		equation:		pV = nRT	
positive ion hits negatively charged plate					
ion gains an electron		3.1.3 bonding			
why use mass spec?		Section:		(Completed?
		ionic		r	סו
moles, Avagadro const		covalent, dative covalent		r	סו
Avogadro constant number of particles in a mole		metallic		r	סו
empirical and molecular formula		physical propertie	es	r	סו
		shapes of molecules and ions		r	סר
formula element in a compound		bond polarity		r	סו
nolecular actual number of atoms of each element in a		forces between molecules (imf)		r	סו
formula compound					
3.1.2 Amount of Substance					
Section:	Completed?				
Mr, Ar	yes				
moles, Avogadro const no					
ideal gas equation no					

empirical and molecular formula equations and associated calculations

By **Soul** (sakiSoul) cheatography.com/sakisoul/

Not published yet. Last updated 3rd March, 2023. Page 4 of 3.

no

no

Sponsored by **Readable.com** Measure your website readability! https://readable.com