

DNA and RNA Chapter 12 BIO Cheat Sheet by Sahasra M via cheatography.com/181013/cs/38841/

Griffith and Transformation

- Fredrick Griffith (British scientist)
- wanted to learn how bacteria makes you sick
- isolated two different strains (types) pnumenia
- disease-causing strain -> smoothing colonies on culture plates -> mice got pneumonia -> dies
- harmless strain -> colonies with rough edges -> lived
- but smooth + rough = pnumonia
- transformation: one strain of bacteria changed permanently to another

Avery & DNA

- Oswald Avery (canadian biologist)
- avery & other scientists discovered that nucleic acid DNA stores & transmits the gentic nfo from one generation to the next

Hershey-Chase Experiment

- Alfred Hershey & Martha Chase (American scientists)
- bacteriophage: one kind of virus that infects bacteria
- concluded that the genetic material of the bacteriophage was DNA not protein

Components & Structure of DNA

- DNA is a lomg molecule made up of units called nucleotides
- nucleotides: 5-carbon sugar called deoxyribose, phosphate group, and a nitrogenous base
- 4 nitrogenous bases: adenine, guanine, cytosine, thymine
- Watson & Crick's model of DNA was a double helix where two strands were wound around each other
- base pairing: for every adenine in a double stranded DNA molecule, there had to be one thymine molecule & for every cytosine molecule, there had to be one quanine molecule
- base pairing explained why Chargaff's rules (% of G and C was equal & A and T were equal)

DNA and Chromosomes

- prokaryotic cells lack nuclei
- eukaryotic DNA is located in the cell nucleus in the form of a number of chromosomes
- humans have 46 chromosomes
- eukaryotic chromosomes carry DNA & protein in chromatin
- chromatin has DNA that is coiled around proteins called histones
- nucleosomes: fold DNA into tiny space of cell nucleus

DNA Replication

- strands of base pairing are complementary
- -before a cell divides, it duplicates its DNA in a copying process called replication
- replication -> DNA molecules separate into 2 strands -> produce 2 new complementary strands thru base pairing -> each strand of double helix is a model for new strand
- DNA polymerase is a key enzyme in replication: joins individual nucleotides to produce DNA molecule

Structure of RNA	
DNA:	RNA:
nucleotides	nucleotides
rdeoxyribose	ribose
double stranded	single stranded
thymine	uracil

Types of RNA

- RNA molecules -> protein synthesis (assembly of amino acids)
- messenger RNA, ribosomal RNA, transfer RNA
- mRNA: carry copies of instructions for assembling amino acids into proteins
- rRNA: where proteins are assembled
- tRNA: transfers amino acid to ribosome by its coded messages

By Sahasra M

cheatography.com/sahasra-m/

Published 23rd May, 2023. Last updated 23rd May, 2023. Page 1 of 2. Sponsored by Readable.com Measure your website readability! https://readable.com

DNA and RNA Chapter 12 BIO Cheat Sheet by Sahasra M via cheatography.com/181013/cs/38841/

Transcription

- transcription: process where RNA molecules are produced by copying part of the nucleotide sequence of dNA into complementary sequence in RNA
- transcription requires RNA polymerase (enzyme)
- transcription -> RNA polymerase binds to DNA and separated DNA strands -> RNA polymerase uses one strand of DNA to assemble strand of RNA
- RNA polymerase only binds into regions of DNA called promoters (indicate where to bind)

RNA Editing

 DNA of eukaryotic genes contains introns (sequences of nucleotides) and exons (sequences that code for proteins)

Genetic Code

- proteins made by joining polypetides (amino acide chains)
- codon: has three consecutive nucleotides that specify a single amino acid that will be added to the polypeptide
- AUG + start codon
- three stop codons

Translation

- translation: decoding of mRNA message into a polypeptide chain
- translation -> cell uses info from mRNA -> produce proteins
- anticodon bases are complementary to codons
- RNA release into cytoplasm -> mRNA ttatches to cytoplasm -> tRNA brings amino acid into ribosome -> translation begins -> codon breaks -> replaced by anticodon -> polypeptide chain grows -> newly formed polypeptide molecule is released -> translation is over

Kinds of Mutations

- mutations are changes in genetic material
- point mutations: changes in one or few nucleotides at a single point in DNA sequence
- frameshift mutations: changes that shift the "reading frame of the genetic message"
- frameshift mutations can change a protein so much that it cannot perform its functions

Significance of Mutations

- mutatios are source of genetic variability in a species
- polyploidy: condition in which an organism has extra sets of chromosomes

By Sahasra M cheatography.com/sahasra-m/

Published 23rd May, 2023. Last updated 23rd May, 2023. Page 2 of 2. Sponsored by Readable.com
Measure your website readability!
https://readable.com