Cheatogre

Class Relationships

Unidirectional:

| all but association

Bidirectional:

| association

can change after instantiation

| aggregation, dependency, association
cannot change after instantiation

| inheritance, composition

which relationships must be created when
objects instantiated: (have shared lifetime)

| inheritance and composition

which relationships can be created at any
convenient time (independent lifetimes)

| aggregation, dependency, association
allow sharing some related objects

| aggregation, dependency, association
exclusive (no sharing)

| inheritance, composition

"is a" "is a kind of"

| inheritance

"has a"

| aggregation, composition, association

C++ Midterm 4 CS1410 Cheat Sheet
by sadieweaver via cheatography.com/86436/cs/20272/

Class Relationships (cont)

whole-part

| aggregation, composition
implemented with dedicated computer
syntax or keyword

| inheritance

Inheritance:

add features to an existing (general)
class without having to rewrite it.

class Foo: public Bar

A C++ stream is a flow of data from one
place to another.

three stream classes commonly used:
ifstream, ofstream, fstream
ofstream sales ("SALES.JUN") ;
output file associated with SALES.JUN
fileOut.put (ch) ; OR fileOut<<ch
put what's in variable 'ch’ in fileOut (an
ofstream thing)

Cstrings char s[100]; cin.getli-
ne(s, 100);

Strings string s; getline(cin, s);

Q27 ch12

Polymorphism

Five requirements: 1. inheritance 2.
function overriding 3. up casting 4. a virtual
function 5. a pointer (usually) or reference
variable

virtual functions allow you to use the same
function call to execute member functions of
objects from different classes

deciding what function call executes after a
program starts is polymorphism

pure virtual function virtual void
dang () = 0; it causes it's class to be
abstract and it is in the super class

an abstract class is useful when no objects
should be instantiated from it.

An abstract class can: be a base (parent or
super) class have concrete features (both
variables and functions) that can be
inherited by derived (child or sub) classes
participate in (i.e., be the target of) an
upcast participate in polymorphism

Object oriented model: inheritance, encaps-
ulation, & polymorphism

overloaded function: Are defined in the

same class Must have unique argument
lists May have different return types

overridden functions: Are defined in two
classes that are related by inheritance Must
have the same name Must have exactly the
same argument list Must have the same
return type

delta, alpha, beta, gamma - this is the order
they have to be in.

By sadieweaver

cheatography.com/sadieweaver/

Not published yet.
Last updated 14th August, 2019.
Page 1 of 2.

Sponsored by Readable.com
Measure your website readability!
https://readable.com

http://www.cheatography.com/
http://www.cheatography.com/sadieweaver/
http://www.cheatography.com/sadieweaver/cheat-sheets/c-midterm-4-cs1410
https://www.cheatography.com/uploads/sadieweaver_1565807412_Screen%20Shot%202019-08-14%20at%2012.29.21%20PM.png
https://www.cheatography.com/uploads/sadieweaver_1565810201_Screen%20Shot%202019-08-14%20at%201.15.18%20PM.png
http://www.cheatography.com/sadieweaver/
https://readable.com

Cheatography

Default: foo() no arguments foo £1; or
foo* £2 = new foo;

Conversion: foo(int i) one argument to be
turned into the class object foo £1(3) ;
or foo* f2 = new foo(3);

General: foo(int x, int y) anything with more
than one

Copy: foo(foo& f) pointer argument

Move: foo(foo&& f) double pointer

a)order is not significant, follow the pattern:

member-name(argument-name)

b) must initialize inheritance first, this is a
function call so the number, type, and order
of the parameters must match the number,
type, and order of the arguments in the
function definition: class-name(parameters),
member(argument)

c) order is not significant; must use the
second argument to access the members
d) the general pattern is class-name::functi-
on-name()

class Bar

private:
int count;
int balance;

public:
Bar (int a_count, int a_balance) :|(a) {1
friend ostream& operator<<ostream& out, Bar& D)
{
, return out; count(a_count), balance(a_balance)
void display()
{

cout << count << " " << balance << endl;

By sadieweaver

cheatography.com/sadieweaver/

C++ Midterm 4 CS1410 Cheat Sheet
by sadieweaver via cheatography.com/86436/cs/20272/

class Foo : public Bar
(
private:

string name;

Bar(count, balance), name(a_name)
public:
Foo (string a_name, int count, int balance) :

8}

)
friend ostreamé operator<<ostreamé out, Foo& £)

{ Bar &)f << “* << f.name

out << (cs << endl;

return out;

void display ()
(@ Bar::display(
out << name << endl;

Templates

When creating a template function, the
template argument or variable is preceded
by the keyword typename or class.

When creating a template class, it's the
same "

The template class works with different
datatypes.

Template source code is placed in a header
file so that it can be included with "normal”
source code where it is compiled following
the type expansion or substitution. (There
can be more than one template argument)

When a class is "templatized" all member
functions are placed in the header file: the
functions can't be compiled until the templi-
tized variable is expanded. So it can't be in
a regular library

template <class T>

class FooBar

correct beginning of an operation called
Foo:
template <class T>

FooBar<T>: :Foo ()

while (true) CList<person>pe-—

ople; . wrong because it creates a

new list every time it loops.

Not published yet.
Last updated 14th August, 2019.
Page 2 of 2.

Sponsored by Readable.com
Measure your website readability!
https://readable.com

http://www.cheatography.com/
http://www.cheatography.com/sadieweaver/
http://www.cheatography.com/sadieweaver/cheat-sheets/c-midterm-4-cs1410
https://www.cheatography.com/uploads/sadieweaver_1565809748_Screen%20Shot%202019-08-14%20at%201.08.36%20PM.png
https://www.cheatography.com/uploads/sadieweaver_1565809887_Screen%20Shot%202019-08-14%20at%201.11.08%20PM.png
http://www.cheatography.com/sadieweaver/
https://readable.com

	C++ Midterm 4 CS1410 Cheat Sheet - Page 1
	Class Relati­onships
	Polymo­rphism
	Class Relati­onships
	Streams
	Q27 ch12

	C++ Midterm 4 CS1410 Cheat Sheet - Page 2
	Constr­uctors
	second part
	Templates
	Chap 12 stuff
	first part

