

What's Blood Made			ies & Blood type (cont)	Capillary Fluid Exchange (Arteriole & Venule Side)	
Plasma (Liquid)	55%	AntiBody A protein designed to			
White Blood Cells & Platelets	Less than 1%		combat any foreign protein	CFE(Arteriole Side)	
	45%	Made by WBC cells in the body		Blood pressure = 40mmHg	
			Will bind to foreign	Osmotic pressure = 25 mmHg	
Plasma Portion 91% Water			proteins with foreign antigens	Net blood pressure (15mm Hg) forces water out of the blood into the interstitial fluid	
	Maintains blood		This causes	Water carries with it the CO2 and metabolic wastes	
	Transports molecules		agglatination (Clumping) WBC's will then destroy the agglutinated cells	Because there is more O2 and nutrients in	
7% Proteins	Transports molecules			interstitial fluid it	
7/61 Totellis			AGGLUTINIZATION	The large things (le:RBC, WBC, platelets,	
	Clotting proteins Albumin	Foreign Antigen + Your antibodies	AGGLUTINIZATION	blood proteins) stay in the capillary because	
		attack>		they are too big to leave	
	Immunoglobulins (Antibodies)	Opposite to the	(So we wont attack our	Because most of the water has left, the blood becomes very hyperosmotic (Concentrated)	
2% Things carried around body		antigens we have on our RBC's	own blood)	The venule side of the capillary is therefore	
	Salts	Because of that	Blood transfusions are	under great osmotic pressure to draw water	
	Gases (02, CO2)		tricky.Foreign antigens lead to death	back into the blood	
	Nutrients			CFE(Venule Side)	
	Wastes	Blood Type	Blood Donor	Osmotic pressure = 25 mmHg	
	Hormones	Α	A & A = Yes A & B =	blood pressure = 10 mmHg	
	Vitamins and Minerals		Clumps A & AB =	Blood very concentrated (little water)	
Blood is 95% Formed Elements(Solid)		_	Clumps A & O = Yes	Net osmotic pressure forces water back into the	
The solid portion of	blood is	В	B & A = Clumps B & B = Yes B & AB = Clumps B	blood	
Red Blood Cells	Erythrocytes/Corpuscle		& O = Yes	Water carries with is CO2 and metabolic wastes (urea)	
	S	С	AB & A = Yes AB & B =	These are carried to the kidneys and other	
White Blood Cells	Leukocytes		Yes AB & AB = Yes AB	excretory organs to be removed	
Platelets	Thrombocytes	0	& O = Yes		
Antigens, Antibodies & Blood type		0	O Clumps with everything except O & O	Aorta & Coronary Arteries and Veins	
			= Yes	Aorta	
Antigen Identification protein on a RBC				Biggest artery	
		Types of Blood Vessels		Carriag OO righ blood from left contrible to	

Antigen	Identification protein on a		
	RBC		

Glycoprotein on RBC membrane

There are two kinds of antigens on humans RBC's: A and or B

Therefore, there are 4 possible blood types:

Antigen A>	Type A blood
Antigen B>	Type B blood
Antigen A & B -	Type AB blood
No Antigens	Type O blood

Types of Blood Vessels			
Arteries			
Arterioles			
Capillaries			
Venules			
Veins			

and metabolic

Carries O2 rich blood from left ventricle to body systems

Loops over top of heart creating aortic arch

Goes down inside the backbone = Dorsal Aorta

Smaller arteries branch off to "feed" the body

Coronary Arteries and Veins

Very first branch off the aortic arch

By **s1717**

cheatography.com/s1717/

Not published yet. Last updated 27th April, 2017. Page 1 of 4.

Sponsored by Readability-Score.com Measure your website readability!

https://readability-score.com

Aorta & Coronary Arteries and Veins (cont)

Smaller arteries branch off to feed the body cells

Carotid Arteries

Branch off the aortic arch to take the blood to

Supply blood to brain = highly specialized

1)Chemoreceptores detect oxygen content

2)Pressure receptors detect changes in blood pressure

Reasonably close to the surface, pulse can be found in neck

Jugular Veins & Subclavien Arteries/Veins

Jugular Veins

Take blood out of head region to the anterior vena cava

These veins do not contain any valves

Blood flows down them because of gravity only

Subclavien arteries Veins

Arteries branch off of aorta and travel under the clavicle

Branch off to feed chest wall/arms (Via brachial arteries)

Note for later: Lymphatic ducts join circulatory system right before the subclavian veins meet up with the anterior vena cava

Red Blood Cells

Red Blood Cells

Facts about RBC

No Nuclei

Transport CO2 and O2 (Acts like a Butter)

Bioconcave discs look like donuts without complete holes!

Live for - 120 days (4 months)

Dark purple to bright red

Contains: hemogloben molecules, carbonic anhydrase, and antigens

THere are - 800 million oxygen molecules in each RBC

Red Blood Cells (cont)

Made in the red bone marrow

Transports

Transports oxygen as oxyhemoglobin (Bright Red)

Hb + O2 ---> HbO2

Transports carbon dioxide as carboxhemoglobin

Hb + CO2 ---> HbCO2

Transports hydrogen ions as reduced hemoglobin (thus acting as a buffer)

Hb + H+ ---> HHb

Erythroblastosis

Erythroblastosis

Rh factor is another antigen that may be present on the RBC

Presence of this antigen plays a role in childbirth

If you are Rh+ $\,$ (85% of Caucasions are Rh+) you have the

antigen you don't have the

D antibodies

You don't normally have the "D" antibodies but can make them if you are exposed to Rh antigens

Why Else is this Important

If an Rh- mother can have an Rh+ baby, complication can occure with a second pregnancy

Normally, the mother/ fetal blood does not mic or cross the placents.

How Can this be prevented

When first Rh+ baby born, doctors can destroy the Rh+ blood cells (in mothers plasma) before mother has time to make Rh Antibodies

Rh immune globulin injection (RhoGAM) does this

Blood Vessels

Arteries

Function

Transport blood away from heart

Structure

Thick, elastic walls

Location

Usually deep, along bones

This protects them from injury and temperature loss

Notes

Walls can expand

Arteries have very high blood pressure

Expansion is the "Pulse" we feel

Arterioles

Function

Control blood flow to capilaries

Structure

Smaller in diameter than arteries, thinner walls

Have pre capillary sphincters

Notes

Blood Pressure > Osmotic Pressure

Regulate blood pressure with pre-capillary sphincter muscles (Can dilate or constrict to increase or decrease blood flow to a particular capillary)

Capillaries

Function

Connect arteries to veins

Site capillary-fluid exchange

Structures

Very thin walls

Location

Found everywhere within a few cells of each other

Venules

Function

Drain blood from capillaries

Structure

d yet. Sponsored by **Readability-Score.com**

Measure your website readability!

https://readability-score.com

C

By **s1717**

cheatography.com/s1717/

Not published yet. Last updated 27th April, 2017. Page 2 of 4.

Blood '	Vacas	0/	lta oc

Thinner walls than veins

Location

Often near the surface

Notes

Join to form veins

Osmotic pressure greater than the blood pressure

The end result is no change in blood volume (No volume lost in exchange)

Veins

Function

Transport blood towards the heart

Structure

Inelastic walls, contain one-way valves

Location

Often near the surface

Notes

Blood pressure & velocity is much lower than in arteries

Valves prevent blood from flowing backwards

Surrounded by skeletal muscle, "Squeezes" blood along

How does it all fit together

Arteries

Carry blood away from the heart

Elastic

Cappillaries

Very thin tubes

Connect arteries to veins

Can close down or open up to regulate blood flow

Gas exchange

Veins

Bring blood towards the heart

Have valves to stop blood from moving backwards

Mesenteric arteries & Hepatic Portal Vein

Mesenteric Arteries

Branch off from the dorsal aorta

Go to the intestines

Branch into capillaries of the intestinal villi

Pick up the newly digested nutreints (glucose, amino acids, and nucleotides)

Hepatic Portal Vein

Hepatic = Liver; Portal = capillary bed on either end

This vein transports blood rich in nuctrients directly from the intestines to the liver

Significant functions related to the circulatory system

Regulation of Blood [Glucose]

Destroys old RBC's

Detoxification of blood

White Blood Cells (WBC) & Platelets

WBC

Make histamines Antibodies attach to antibodies and foreign invaders & the hunter killer cels hunter killer cells destroy them

Fight infection

WBC's can squeeze out of blood vesells to attack invaders

Strangely shaped nuclei

Made of red bone marrow

Platelets

150,000-300,000 / mm3 blood

Fragments of cell no nuclei

Humans produce 200 billion a day

Made in bone marrow

Aid in blood clotting

recognize micro tears in blood vessels & bined together to form a blood clot

Steps

A Vessel and Step 1
Platelets become
Damaged some
way

White Blood Cells (WBC) & Platelets (con-

Platelets release a protein called Step thromboglastie 2

Thromboplastin changes prothrombin (a Step blood protein produced by the liver) into 3 thrombin (requires calcium)

Thrombin changes fibrinogen into fibrin Step (insoluble) 4

Circulatory system two parts

Systemic Circulation

System of blood vessels that delivers exygenated blood to body systems

Pulmonary Circulation

System of blood vessels that delivers deoxygenated blood to the lungs to be replenished with oxygen

The systemic arteries carry oxygenated blood

Pulmonary arteries carry deoxygenated blood

Hepatic Veins, Renal & Iliac Arteries/Veins

Hepatic Veins

Carries the blood from liver to posterior vena cava

Renal Arteries/Veins

Renal arteries branch off dorsal aorta and bring blood to kidneys

Renal veins take blood from kidneys to posterior vena cava

Iliac Arteries/Veins

Dorsal aorta branches into two iliac arteries in the pelvic area

One iliac artery goes down each leg

Femoral artery branches off iliac artery to large quadricep muscle

Iliac veins return blood to posterior

Pulmonary Arteries/Veins

By s1717 cheatography.com/s1717/

Not published yet. Last updated 27th April, 2017. Page 3 of 4. Sponsored by **Readability-Score.com**Measure your website readability!
https://readability-score.com

Hepatic Veins, Renal & Iliac Arteries/Veins

de02 blood collected from the body is pumped into the pulmonary artery from the right ventricle

Pulmonary artery brings de02 blood to lungs

blood picks up O2 in the alveoli of lungs

Pulmonary vein takes high O2 blood back to heart

Fetal Circulation

A fetus does not use its lungs

The fetus receives its O2 blood from the Placenta, not its lungs

To do this, ther are four features in the fetus not presents in the adult

Foramen Ovale

This is an opening between the left and right atria

It is covered by a flup that acts as a valve

It allows the blood to bypass the lungs

it reroutes most of the blood from the right atrium into the left atrium

Ductus Arteriosus (Arterial Duct)

This is small arterial connection, like a shunt

Between the pulmonaryartery and the aonta

It further allows blood to bypass the lungs

Umbilical Cord

Has three blood vessels traveling through it

The largest one is the umbilical vein which transports blood with oxygen and nutrients into the fetus

The other two are the umbilical arteries which branch off of the iliac arteries in the fetus and take spent (wastes and CO2) blood back into the mother via the placenta

Ductus Venosus (Venous Duct)

The blood vessel connects to the vena cava

The O2 blood from the umbilical vein mixes with deO2 blood in the vena cava

Fetal Circulation (cont)

The ductus veaosus bypasses the l8iver and this blood is sent directly to the heart

Blood will go to the liver eventually but not until it has reached the hepatic portal vein

This is why the fetus is so susceptible to toxins in blood

Changes at Birth

The First Breath The lungs are filled with air instead of fluid and higher oxygen levels of the blood and alveoli results in an increase in pulmonary blood flow

Anatomical Changes

The placenta is removed from circulation

The foramen ovale, ductus venosus, and ductus arteriosus

Lymphatic System

Functions

Take up excessive tissue fluids

Transport fatty acids and glycerol (From intestines to subclavian vein)

Fight infection (Lymphocytes)

Trap and remove cellular debris

Structures

Lymph Ducts and Capillaries

Drain and collect excess fluids from tissues

Take fluids to nodes to be cleaned

Cleansed lymph travels through lymph ducts to the subclavian vein where they are dumbped into the anterior vena cava

Lymph Nodes

Remove debris from lymph = Cleanse lymph

Contain Phagocytic Lymphocytes

White Blood Cells make antibodies and attack invaders

Lactaels

Lymphatic System (cont)

Absorb/Transport fatty acids & glycerol in the villi of the small intestine

Other lymphoid Organs

Tonsils, Appendix, Spleen, and Thymus Gland

By **s1717**

cheatography.com/s1717/

Not published yet. Last updated 27th April, 2017. Page 4 of 4. Sponsored by **Readability-Score.com**Measure your website readability!
https://readability-score.com