Cheatography

Engineering Materials Cheat Sheet by So3aljabri via cheatography.com/178697/cs/37237/

Chapter 1 + 2: (cont)

faces.

[2x1/2] + 3)

APF: 0.74

p = Density

Co-ordination #: 12

 $p = (n \times A) / (V^C \times N^A)$

A = Atomic weight

 $(6.023 x 10^{23})$

Volumes (V^{C}):

FCC + BCC = a^3

HCC = $6R^2c\sqrt{3}$

Single Crystals:

 $V^{C} = Volume of unit cell$

N^A Avogadro's number

Regular hexagons on top &

bottom faces with one atom

corners) and a single atom in

the face center. Another plane

provides 3 additional atoms is

Association #: 6 ([12x1/6] +

Density Computation:

n = number of cells associated

Crystalline and Noncrystalline

Materials

located between top and bottom

located at each corner (6

Chapter 1 + 2: (cont)

and center of each face

Edge Length: $a = 2R\sqrt{2}$

[1/2 x6])

Atoms located at each corners

Association: unit cell has four

equivalent atoms (i.e. [1/8 x8]+

Co-ordination Number: Each

atom has the same number of

nearest- neighbor or touching

Atomic Packing Factor(APF):

APF = (volume of atoms in a unit cell)/ (volume of unit cell)

BCC: Body-Centered Cubic

Cubic unit cell with atoms

Edge length: $a = 4R/\sqrt{3}$

HCP: Hexagonal Closed-

Co-ordination #: 8

APF: 0.68

Packed

located at each corner and a

single atom at the cube center.

Association #: 2 (1 atom from 8

corners + 1 single center atom)

atoms, FCC has 12

FCC is 0.74

Chapter 1 + 2:						
CHAPTER 1:						
Material Science:	Investigates the relationships that exist between					
	Structure & Properties of materials.					
Material Engine- ering:	Designing the structure of a material to produce required set of properties.					
Classific- ation of materials:	<i>Metals, Ceramics, Polymers & Composites</i>					
Advanced materials	Semiconductors, Biomaterials, Smart materials & Nano- materials					
CHAPTER 2:						
Solid Materials Classifications:						
Crysta- lline Materials:	Atoms are situated in a repeating/pe- riodic array over large atomic distances.					
Examples:	All metals, many ceramics, and some polymers					
Lattice:	3D array of points coinciding with atom positions.					
Unit Cells:	The basic structure unit or building block of the crystal structure					
Metallic Crystal Structures:						

FCC: Face-Centered Cubic

By S03aljabri cheatography.com/s03aljabri/ Not published yet. Last updated 21st February, 2023. Page 1 of 2. Sponsored by CrosswordCheats.com Learn to solve cryptic crosswords! http://crosswordcheats.com

Chapter 1 + 2: (cont)

When the periodic and repeated arrangement of atoms is perfect or extends throughout the entirety of the specimen without interruption, the result is a single crystal.

Polycrystalline:

Composed of a collection of many small crystals or grains; such materials are termed polycrystalline.

Polymer Crystallinity:

Molecular substances of small molecules (as H2O, CH4,...) are totally Crystalline (as solid) or totally Amorphous (as liquids)

% crystallinity = [ρc (ρs – ρa)] / [ρs(ρc – ρa)]x100

Degree of crystallinity depends on:

Cooling rate during solidification

Chain configuration

Noncrystalline Solids:

Cheatography

Engineering Materials Cheat Sheet by So3aljabri via cheatography.com/178697/cs/37237/

Chapter 1 -	+ 2: (cont)	CHAPTER	3 + 4 (cont)	CHAPTE	R 3 + 4 (cont)	CHAPTE	R 3 + 4 (cont)
Lacks of s arrangeme relatively la distances.	ystematic and regular ent of atoms over arge atomic	Equili- brium number of vacancies (N ^v):	Formed by: Solidi- fication & Atomic Vibration $N^{V} = N \times e^{(-QV/kT)}$	Edge disloc- ation:	Linear crystal-line defect associated with the lattice distortion produced in the vicinity of the extra half-plane of atoms within a crystal.	Grain Size determ- ination:	$N=2^{n-1}$
Amorphou without for structure)	rs : meaning literally rm (non-crystalline						<i>N</i> : Average number of grains per in ² at 100X magnification.
atomic stru	ucture resembles that	()	<i>N</i> : Total number of atomic sites		<i>BV:</i> Perpendicular to the dislocation line.*	Compo	n : Grain Size #
CHAPTER	3 + 4		Qv : Energy required for	Screw disloc- ation:	A linear crystal-line defect associated with the lattice	Compo	C1 = m1/ (m1+m2)x100
Imperior	fections In Solids		<i>T : Absolute</i> <i>Temperature</i>		distortion produced when normally //		$nm1 = m1 \times N^{A}/A1$ $C1' = nm1/(nm1+n-m^{2})v(100)$
lline materials on an atomic scale does not exist, all contain large numbers of various defects or imperfections .		<i>k :</i> *Boltzmann's Constant (1.38x10 ⁻ ²³ J/atom K or 8.62x10 ⁻⁵ ev/atom		planes are joined together to form a helical ramp. BV : // to the disloc-		p ave. = 100 / (C1/p1) + C2/p2) A ave. = 100 / (C1/A1)	
Crysta- lline defect:	Lattice irregularity in one/more of its dimensions on the	Self-Inte- rstitial:	K) It means an atom is crowded into an interstitial site	Interfacia	I defect: It is 2D defect.		CHAPTER 4
	diameter.			Grain Boundo	It is the boundary	•	
Classification of crystalline imperfections:		Linear defe	cts: It is 1D defect	ries:	grains/crystals having	4	
Point defec	t: associated with one/more atomic positions	Burgers Vector (BV):	<i>Gives the magnitude & direction of lattice distortion</i>		different crystallo- graphic orientation in polycrystalline materials.		
Types:			associated with a dislocation.				
Vacancy:	An atom is missing from one normally occupied site	Types:					

C

By S03aljabri

cheatography.com/s03aljabri/

Not published yet. Last updated 21st February, 2023. Page 2 of 2. Sponsored by CrosswordCheats.com Learn to solve cryptic crosswords! http://crosswordcheats.com