

Engineering Materials Cheat Sheet by So3aljabri via cheatography.com/178697/cs/37237/

Chapter 1 + 2:

CHAPTER 1:

Material Science:

relationships that exist between Structure & Properties of

materials.

Investigates the

Material Engineering:

Designing the structure of a material to produce required set of properties.

Classification of materials:

Polymers & Composites Semiconductors.

Metals, Ceramics,

Advanced materials

Biomaterials, Smart materials & Nanomaterials

CHAPTER 2:

Solid Materials Classifications:

Crystalline Materials: Atoms are situated in a repeating/periodic array over

large atomic distances.

Examples:

All metals, many ceramics, and some polymers

Lattice:

3D array of points coinciding with atom positions.

Unit Cells:

The basic structure unit or building block of the crystal structure

Metallic Crystal Structures:

FCC: Face-Centered Cubic

Atoms located at each corners and center of each face

Edge Length: $a = 2R\sqrt{2}$

Association: unit cell has four equivalent atoms (i.e. [1/8 x8]+ [1/2 x6])

Co-ordination Number: Each atom has the same number of nearest- neighbor or touching atoms, FCC has 12

Atomic Packing Factor(APF): APF = (volume of atoms in a unit cell)/ (volume of unit cell) FCC is 0.74

BCC: Body-Centered Cubic

Cubic unit cell with atoms located at each corner and a single atom at the cube center.

Edge length: $a = 4R/\sqrt{3}$

Association #: 2 (1 atom from 8 corners + 1 single center atom)

Co-ordination #: 8

APF: 0.68

HCP: Hexagonal Closed-Packed

Chapter 1 + 2: (cont)

bottom faces with one atom located at each corner (6 corners) and a single atom in the face center. Another plane provides 3 additional atoms is located between top and bottom faces.

Regular hexagons on top &

Association #: 6 ([12x1/6] + [2x1/2] + 3)

Co-ordination #: 12

APF: 0.74

Density Computation:

 $p = (n \times A) / (V^{C} \times N^{A})$

p = Density

n = number of cells associated

A = Atomic weight

V^C = Volume of unit cell

NA Avogadro's number (6.023x10²³)

Volumes (VC):

 $FCC + BCC = a^3$

 $HCC = 6R^2c\sqrt{3}$

Crystalline and Noncrystalline Materials

Single Crystals:

Chapter 1 + 2: (cont)

When the periodic and repeated arrangement of atoms is perfect or extends throughout the entirety of the specimen without interruption, the result is a single crystal.

Polycrystalline:

Composed of a collection of many small crystals or grains; such materials are termed polycrystalline.

Polymer Crystallinity:

Molecular substances of small molecules (as H2O, CH4,...) are totally Crystalline (as solid) or totally Amorphous (as liquids)

% crystallinity = $[\rho c (\rho s - \rho a)] /$ $[\rho s(\rho c - \rho a)]x100$

Degree of crystallinity depends on:

Cooling rate during solidification

Chain configuration Noncrystalline Solids:

By S03aljabri

cheatography.com/s03aljabri/

Not published yet. Last updated 21st February, 2023. Page 1 of 2.

Sponsored by Readable.com Measure your website readability! https://readable.com

Engineering Materials Cheat Sheet by So3aljabri via cheatography.com/178697/cs/37237/

Chapter 1 + 2: (cont)		CHAPTER 3 + 4 (cont)		CHAPTER 3 + 4 (cont)		CHAPTER 3 + 4 (cont)	
arrangem relatively	Lacks of systematic and regular arrangement of atoms over relatively large atomic distances. Amorphous: meaning literally without form (non-crystalline structure)		Formed by: Solidification & Atomic Vibration $N^{V} = N \times e^{(-QV/kT)}$	Edge disloc-ation: Screw disloc-ation:	Linear crystal-line defect associated with the lattice distortion produced in the vicinity of the extra half-plane of atoms within a crystal. BV: Perpendicular to the dislocation line.* A linear crystal-line defect associated with the lattice distortion produced when normally // planes are joined together to form a helical ramp.	Grain Size determ- ination:	$N = 2^{n-1}$
without fo structure)							N : Average number of grains per in ² at 100X magnification.
Super-cooled liquids : their		(N^{ν}) :					n : Grain size #
atomic structure resembles that of liquids			N: Total number of atomic sites			Composition / Concentration	
CHAPTER 3 + 4			Qv: Energy required for vacancy formation T: Absolute Temperature k: *Boltzmann's Constant (1.38x10 ⁻²³ J/atom K or 8.62x10 ⁻⁵ ev/atom K)				C1 = m1/ (m1+m2)x100
CHAPTER 3							$nm1 = m1 \times N^A/A1$
Imperfections In Solids Perfect order throughout crysta- lline materials on an atomic scale does not exist, all contain large numbers of various defects or imperfections.							C1' = nm1/ (nm1+n- m2)x100
							ρ ave. = 100 / (C1/ρ1 + C2/ρ2)
					BV: // to the disloc- ation line.		A ave. = 100 / (C1/A1 + C2/A2)
Crysta- Iline	Lattice irregularity in one/more of its dimensions on the scale of atomic diameter.	Self-Inte- rstitial:	It means an atom is crowded into an interstitial site	Interfacia	al defect		CHARTER 4
defect:				It is 2D defect.			CHAPTER 4
				Grain	It is the boundary	٤	
Classification of crystalline		Linear defects:		Bounda	separating two small		
imperfections:		zirioar doro	It is 1D defect	ries:	grains/crystals having different crystallo-		
Point defect:		Burgers	Gives the				
	associated with one/more atomic positions	Vector (BV):	magnitude & direction of lattice distortion		graphic orientation in polycrystalline materials.		
Types:			associated with a				
Vacancy:	An atom is missing from one normally	Types:	dislocation.				
	· · · · t t t -						

By **S03aljabri**

occupied site

cheatography.com/s03aljabri/

Not published yet. Last updated 21st February, 2023. Page 2 of 2. Sponsored by Readable.com

Measure your website readability!

https://readable.com