

Geometry Semester 1 Cheat Sheet

by ryanagnos01 via cheatography.com/51096/cs/14028/

Distance Formula

distance =
$$\sqrt{(x_2-x_2)^2 + (y_2-y_2)^2}$$

Slope Formula

slope =
$$\frac{y_2 - y_1}{x_2 - x_1}$$
 where $x_2 \neq x_1$

Midpoint Formula

$$\text{midpoint} = \left(\frac{x_i + x_2}{2}, \frac{y_i + y_2}{2}\right)$$

Types of Triangles

Name	Example	Point of Concurrency	Special Property	Example
perpendicular bisector		circumcenter	The circumcenter P of △ABC is equidistant from each vertex.	A B
angle bisector	\triangle	incenter	The incenter Q of $\triangle ABC$ is equidistant from each side of the triangle.	A B
median		centroid	The centroid R of \(\triangle ABC \) is two thirds of the distance from each vertex to the midpoint of the opposite side.	A D C
altitude		orthocenter	The lines containing the altitudes of △ABC are concurrent at the orthocenter S.	B

Proof

trees: $\overline{EG} \parallel \overline{DF}$, $\overline{EG} \equiv \overline{DF}$ cover: $\overline{ED} \parallel \overline{GF}$	77"	
tone; tone: ED Cb.	ш (с	
Statements	Resons	
1. EG ≥ CF	1. Given	
2. FG DF	2. Given	
3. ∠EGD = ∠FDG	3. Alt. Int. A Three.	
4. GD = GD	4. Reflex Prop. of ::	
S. AFGD = AFDG	S. SAS Steps I, it, and if	
6. /EDG = /FGD	6. CPCTC	
7. ED GF	7. Converse of Alt Int. A Three	

Terms

Acute Angle	Less than 90°
Adjacent Angle	Two angles on the same plane
Collinear Points	Two points on the same line
Complementary Angle	Two angles whose sum is 90°
Midpoint	The point halfway between the endpoints of a segment.
Obtuse Angle	More than 180°
Ray	A point on a line and all points in one direction
Vertical Angles	Two nonadjacent angles formed by two intersecting lines

Terms (cont)

Linear Pair	Adjacent angles whose non-common sides are opposite rays
Isoscles	At least two sides are congruent
Scalene	Nothing is congruent
Equilatera	Every side is the same length

Biconditio	A and B are bi conditionally related if A implies B and B
nal	implies A.

Countere	a number which disproves a proposition For example, the
xample	prime number 2 is a counterexample to the statement "All
	prime numbers are odd."

Isometry A isometry is a transformation where distance (aka size) is preserved.

Preimage Produced by reflection from a mirror, refraction by a lens, or the passage of luminous rays through a small aperture and their reception on a surface.

Translatio A transformation in which a graph or geometric figure is n picked up and moved to another location without any change in size or orientation.

Types of Angles

Geometry Semester 1 Cheat Sheet

by ryanagnos01 via cheatography.com/51096/cs/14028/

Pythagorean Theorem $a^2 + \ b^2 = c^2$

Reflections TYPE OF REFLECTION Point of the image (After reflection) Reflection about the x- axis (x,-y) (x,y) Reflection about the y-axis Reflection about (x,y) (-x,y) (y,x) (x,y) the line y = x Reflection abo (x,y) (-y,-x) the line y = -x Reflection about (x,y) (-x,-y) the origin

Name	Property of Equality
Addition Property	If $a = b$, then $a + c = b + c$
Subtraction Property	If $a = b$, then $a - c = b - c$
Multiplication Property	If $a = b$, then $ac = bc$
Division Property	If $a = b$, then $a/c = b/c$
Reflexive Property	For any real $\#$, $a = a$
Symmetric Property	If $a = b$, then $b = a$
Transitive Property	If $a = b$ and $b = c$, then $a = c$
Substitution Property	If $a = b$, then b can be substituted in for a

By ryanagnos01 cheatography.com/ryanagnos01/

Published 19th December, 2017. Last updated 19th December, 2017. Page 2 of 2. Sponsored by **CrosswordCheats.com**Learn to solve cryptic crosswords!
http://crosswordcheats.com