\documentclass[10pt,a4paper]{article} % Packages \usepackage{fancyhdr} % For header and footer \usepackage{multicol} % Allows multicols in tables \usepackage{tabularx} % Intelligent column widths \usepackage{tabulary} % Used in header and footer \usepackage{hhline} % Border under tables \usepackage{graphicx} % For images \usepackage{xcolor} % For hex colours %\usepackage[utf8x]{inputenc} % For unicode character support \usepackage[T1]{fontenc} % Without this we get weird character replacements \usepackage{colortbl} % For coloured tables \usepackage{setspace} % For line height \usepackage{lastpage} % Needed for total page number \usepackage{seqsplit} % Splits long words. %\usepackage{opensans} % Can't make this work so far. Shame. Would be lovely. \usepackage[normalem]{ulem} % For underlining links % Most of the following are not required for the majority % of cheat sheets but are needed for some symbol support. \usepackage{amsmath} % Symbols \usepackage{MnSymbol} % Symbols \usepackage{wasysym} % Symbols %\usepackage[english,german,french,spanish,italian]{babel} % Languages % Document Info \author{rubycitalan} \pdfinfo{ /Title (chem-mt-1-6.pdf) /Creator (Cheatography) /Author (rubycitalan) /Subject (Chem MT 1-6 Cheat Sheet) } % Lengths and widths \addtolength{\textwidth}{6cm} \addtolength{\textheight}{-1cm} \addtolength{\hoffset}{-3cm} \addtolength{\voffset}{-2cm} \setlength{\tabcolsep}{0.2cm} % Space between columns \setlength{\headsep}{-12pt} % Reduce space between header and content \setlength{\headheight}{85pt} % If less, LaTeX automatically increases it \renewcommand{\footrulewidth}{0pt} % Remove footer line \renewcommand{\headrulewidth}{0pt} % Remove header line \renewcommand{\seqinsert}{\ifmmode\allowbreak\else\-\fi} % Hyphens in seqsplit % This two commands together give roughly % the right line height in the tables \renewcommand{\arraystretch}{1.3} \onehalfspacing % Commands \newcommand{\SetRowColor}[1]{\noalign{\gdef\RowColorName{#1}}\rowcolor{\RowColorName}} % Shortcut for row colour \newcommand{\mymulticolumn}[3]{\multicolumn{#1}{>{\columncolor{\RowColorName}}#2}{#3}} % For coloured multi-cols \newcolumntype{x}[1]{>{\raggedright}p{#1}} % New column types for ragged-right paragraph columns \newcommand{\tn}{\tabularnewline} % Required as custom column type in use % Font and Colours \definecolor{HeadBackground}{HTML}{333333} \definecolor{FootBackground}{HTML}{666666} \definecolor{TextColor}{HTML}{333333} \definecolor{DarkBackground}{HTML}{C70A0A} \definecolor{LightBackground}{HTML}{FBEFEF} \renewcommand{\familydefault}{\sfdefault} \color{TextColor} % Header and Footer \pagestyle{fancy} \fancyhead{} % Set header to blank \fancyfoot{} % Set footer to blank \fancyhead[L]{ \noindent \begin{multicols}{3} \begin{tabulary}{5.8cm}{C} \SetRowColor{DarkBackground} \vspace{-7pt} {\parbox{\dimexpr\textwidth-2\fboxsep\relax}{\noindent \hspace*{-6pt}\includegraphics[width=5.8cm]{/web/www.cheatography.com/public/images/cheatography_logo.pdf}} } \end{tabulary} \columnbreak \begin{tabulary}{11cm}{L} \vspace{-2pt}\large{\bf{\textcolor{DarkBackground}{\textrm{Chem MT 1-6 Cheat Sheet}}}} \\ \normalsize{by \textcolor{DarkBackground}{rubycitalan} via \textcolor{DarkBackground}{\uline{cheatography.com/68269/cs/17194/}}} \end{tabulary} \end{multicols}} \fancyfoot[L]{ \footnotesize \noindent \begin{multicols}{3} \begin{tabulary}{5.8cm}{LL} \SetRowColor{FootBackground} \mymulticolumn{2}{p{5.377cm}}{\bf\textcolor{white}{Cheatographer}} \\ \vspace{-2pt}rubycitalan \\ \uline{cheatography.com/rubycitalan} \\ \end{tabulary} \vfill \columnbreak \begin{tabulary}{5.8cm}{L} \SetRowColor{FootBackground} \mymulticolumn{1}{p{5.377cm}}{\bf\textcolor{white}{Cheat Sheet}} \\ \vspace{-2pt}Published 24th September, 2018.\\ Updated 24th September, 2018.\\ Page {\thepage} of \pageref{LastPage}. \end{tabulary} \vfill \columnbreak \begin{tabulary}{5.8cm}{L} \SetRowColor{FootBackground} \mymulticolumn{1}{p{5.377cm}}{\bf\textcolor{white}{Sponsor}} \\ \SetRowColor{white} \vspace{-5pt} %\includegraphics[width=48px,height=48px]{dave.jpeg} Measure your website readability!\\ www.readability-score.com \end{tabulary} \end{multicols}} \begin{document} \raggedright \raggedcolumns % Set font size to small. Switch to any value % from this page to resize cheat sheet text: % www.emerson.emory.edu/services/latex/latex_169.html \footnotesize % Small font. \begin{multicols*}{3} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{The Scientific Method}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{{\bf{Chemistry}} is the science that deals with the materials of the universe and the changes that these materials undergo.} \tn % Row Count 3 (+ 3) % Row 1 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{Steps:} \tn % Row Count 4 (+ 1) % Row 2 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{1. {\emph{State the problem and collect data}} (make observations)} \tn % Row Count 6 (+ 2) % Row 3 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{2. {\emph{Formulate hypotheses}}. A hypothesis is a {\emph{possible}} explination for the observation.} \tn % Row Count 8 (+ 2) % Row 4 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{3. {\emph{Preform Experiments}}. Gather new information that allows us to decide whether the hypothesis is supported by the new information we have learned} \tn % Row Count 11 (+ 3) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Measurements and Calculations}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{Scientific notation expresses a number as a product of a number between 1 and 10 and the appropriate power of 10.} \tn % Row Count 3 (+ 3) % Row 1 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{Ex. (100= 1.0×10\textasciicircum{}2\textasciicircum{} , 0.010=1.0×10\textasciicircum{}-2\textasciicircum{})} \tn % Row Count 4 (+ 1) % Row 2 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{If the decimal is moved to the left, the power of 10 is {\emph{positive}} ; if the decimal is moved to the right, the power of 10 is {\emph{negative}}.} \tn % Row Count 7 (+ 3) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Unit Prefixes}} \tn \SetRowColor{LightBackground} \mymulticolumn{1}{p{5.377cm}}{\vspace{1px}\centerline{\includegraphics[width=5.1cm]{/web/www.cheatography.com/public/uploads/rubycitalan_1537689756_PREFIXES SG.PNG}}} \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Significant Figures}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{The numbers recorded in a measurement are called {\bf{significant figures}}.} \tn % Row Count 2 (+ 2) % Row 1 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{1. {\emph{Nonzero integers}} always count as significant figures. Ex. (4567 has four nonzero integers that count as significant figures.)} \tn % Row Count 5 (+ 3) % Row 2 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{2. {\emph{Zeros}}.} \tn % Row Count 6 (+ 1) % Row 3 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{a. {\emph{leading zeros}} never count as significant figures. Leading zeros are all zeros that {\emph{precede}} nonzero integers.} \tn % Row Count 9 (+ 3) % Row 4 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{b. {\emph{captive zeros}} always count as significant figures. Captive zeros are zeros that fall in between two nonzero digits.} \tn % Row Count 12 (+ 3) % Row 5 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{c. {\emph{trailing zeros}} are sometimes significant figures. Trailing zeros are zeros right at the end of a number. They are {\bf{only}} significant if the number is written with a decimal. (Ex. The number 100 only has one SF 1 ; but the number 100. has three SF.} \tn % Row Count 18 (+ 6) % Row 6 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{3. {\emph{Exact Numbers}} never limit the number of significant figures in a calculation.} \tn % Row Count 20 (+ 2) % Row 7 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{{\bf{Significant figures also apply to scientific notation}}.} \tn % Row Count 22 (+ 2) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Temperature Conversion}} \tn \SetRowColor{LightBackground} \mymulticolumn{1}{p{5.377cm}}{\vspace{1px}\centerline{\includegraphics[width=5.1cm]{/web/www.cheatography.com/public/uploads/rubycitalan_1537691272_temp con ch.jpg}}} \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{TC Equations}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{Temperature in Kelvins = Temperature in Celsius + 273} \tn % Row Count 2 (+ 2) % Row 1 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{Temperature in Celsius = Temperature in Kelvin - 273} \tn % Row Count 4 (+ 2) % Row 2 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{Temperature in Fahrenheit = 1.80( Temperature in Celsius) +32} \tn % Row Count 6 (+ 2) % Row 3 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{Temperature in Celsius = Temperature in Fahrenheit - 32 / 1.80} \tn % Row Count 8 (+ 2) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Density, Mass, and Volume}} \tn \SetRowColor{LightBackground} \mymulticolumn{1}{p{5.377cm}}{\vspace{1px}\centerline{\includegraphics[width=5.1cm]{/web/www.cheatography.com/public/uploads/rubycitalan_1537692157_original-436098-1.jpg}}} \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Elements and Compounds}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{An {\bf{element}} is a substance that cannot be broken down into other substances by chemical means.} \tn % Row Count 2 (+ 2) % Row 1 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{When elements combine, they form {\bf{compounds}}, which are substances that can be broken down into elements by chemical means.} \tn % Row Count 5 (+ 3) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Pure Substances and Mixtures}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{A {\emph{pure substance}} is either an element or compound.} \tn % Row Count 2 (+ 2) % Row 1 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{A {\emph{mixture}} can be defines as something that has variable composition.} \tn % Row Count 4 (+ 2) % Row 2 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{Mixtures can be classified as either homogeneous or heterogeneous.} \tn % Row Count 6 (+ 2) % Row 3 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{A {\emph{homogeneous}} mixture is the same throughout. This type of mixture is also called a solution.} \tn % Row Count 8 (+ 2) % Row 4 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{A {\emph{heterogeneous}} mixture contains regions that have different properties from those of other regions.} \tn % Row Count 11 (+ 3) % Row 5 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{These mixtures can be separated through {\bf{distillation}} and {\bf{filtration}}.} \tn % Row Count 13 (+ 2) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Mixtures}} \tn \SetRowColor{LightBackground} \mymulticolumn{1}{p{5.377cm}}{\vspace{1px}\centerline{\includegraphics[width=5.1cm]{/web/www.cheatography.com/public/uploads/rubycitalan_1537693155_1.11.jpg}}} \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Dalton's Atomic Theory}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{1. Elements are made of tiny particles called {\bf{atoms}}.} \tn % Row Count 2 (+ 2) % Row 1 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{2. All atoms of a given element are identical.} \tn % Row Count 3 (+ 1) % Row 2 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{3. The atoms of a given element are different from those of any other element.} \tn % Row Count 5 (+ 2) % Row 3 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{3. Atoms of one element can combine with atoms of other elements to form compounds. A given compound always has the same relative numbers and types of atoms.} \tn % Row Count 9 (+ 4) % Row 4 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{4. Atoms are indivisible in the chemical process. Atoms are not created nor destroyed in chemical reactions. A chemical reaction simply changes the way the atoms are grouped together.} \tn % Row Count 13 (+ 4) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Atom Structure}} \tn \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{Image could not be loaded.} \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Isotopes}} \tn \SetRowColor{LightBackground} \mymulticolumn{1}{p{5.377cm}}{\vspace{1px}\centerline{\includegraphics[width=5.1cm]{/web/www.cheatography.com/public/uploads/rubycitalan_1537697262_maxresdefault.jpg}}} \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Periodic Table}} \tn \SetRowColor{LightBackground} \mymulticolumn{1}{p{5.377cm}}{\vspace{1px}\centerline{\includegraphics[width=5.1cm]{/web/www.cheatography.com/public/uploads/rubycitalan_1537693995_PeriodicTableMeltingPoint.png}}} \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Ions}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{An {\emph{ion}} is an atom or molecule with a net electric charge due to the loss or gain of one or more electrons.} \tn % Row Count 3 (+ 3) % Row 1 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{A {\emph{cation}} is a positively charged ion; an ion that has lost electrons.} \tn % Row Count 5 (+ 2) % Row 2 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{An {\emph{anion}} is a negatively charged; an atom that has gained electrons.} \tn % Row Count 7 (+ 2) % Row 3 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{{\bf{Alkali Metals}} are the most reactive metals that can form cations easily by only needing to lose one valence electron.} \tn % Row Count 10 (+ 3) % Row 4 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{{\bf{Halogens}} are the most reactive nonmetals that can form anions easily by only needing to gain one valence electron.} \tn % Row Count 13 (+ 3) % Row 5 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{{\bf{Noble Gasses}} have 8 valence electrons so they are already stable.} \tn % Row Count 15 (+ 2) % Row 6 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{An ionic bond is a chemical bond resulting from the attraction between oppositely charged ions.} \tn % Row Count 17 (+ 2) % Row 7 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{{\bf{A chemical compound must have a net charge of 0 (zero)}}} \tn % Row Count 19 (+ 2) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Ionic charges}} \tn \SetRowColor{LightBackground} \mymulticolumn{1}{p{5.377cm}}{\vspace{1px}\centerline{\includegraphics[width=5.1cm]{/web/www.cheatography.com/public/uploads/rubycitalan_1537698297_IMG_2185.PNG}}} \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{p{0.87717 cm} x{1.33664 cm} p{0.75186 cm} x{1.21133 cm} } \SetRowColor{DarkBackground} \mymulticolumn{4}{x{5.377cm}}{\bf\textcolor{white}{Common Simple Cations and Anions}} \tn % Row 0 \SetRowColor{LightBackground} Cation & Name & Anion & Name \tn % Row Count 1 (+ 1) % Row 1 \SetRowColor{white} H\textasciicircum{}+\textasciicircum{} & hydrogen & H\textasciicircum{}-\textasciicircum{} & hydride \tn % Row Count 2 (+ 1) % Row 2 \SetRowColor{LightBackground} Li\textasciicircum{}+\textasciicircum{} & lithium & F\textasciicircum{}-\textasciicircum{} & fluoride \tn % Row Count 3 (+ 1) % Row 3 \SetRowColor{white} Na\textasciicircum{}+\textasciicircum{} & sodium & Cl\textasciicircum{}-\textasciicircum{} & chloride \tn % Row Count 4 (+ 1) % Row 4 \SetRowColor{LightBackground} K\textasciicircum{}+\textasciicircum{} & potassium & Br\textasciicircum{}-\textasciicircum{} & bromide \tn % Row Count 5 (+ 1) % Row 5 \SetRowColor{white} Cs\textasciicircum{}+\textasciicircum{} & cesium & I\textasciicircum{}-\textasciicircum{} & iodide \tn % Row Count 6 (+ 1) % Row 6 \SetRowColor{LightBackground} Be\textasciicircum{}2+\textasciicircum{} & beryllium & O\textasciicircum{}2-\textasciicircum{} & oxide \tn % Row Count 7 (+ 1) % Row 7 \SetRowColor{white} Mg\textasciicircum{}2+\textasciicircum{} & magnesium & S\textasciicircum{}2-\textasciicircum{} & sulfide \tn % Row Count 8 (+ 1) % Row 8 \SetRowColor{LightBackground} Ca\textasciicircum{}2+\textasciicircum{} & calcium & & \tn % Row Count 9 (+ 1) % Row 9 \SetRowColor{white} Ba\textasciicircum{}2+\textasciicircum{} & barium & & \tn % Row Count 10 (+ 1) % Row 10 \SetRowColor{LightBackground} Al\textasciicircum{}3+\textasciicircum{} & aluminum & & \tn % Row Count 11 (+ 1) % Row 11 \SetRowColor{white} Ag\textasciicircum{}+\textasciicircum{} & silver & & \tn % Row Count 12 (+ 1) % Row 12 \SetRowColor{LightBackground} Zn\textasciicircum{}2+\textasciicircum{} & zinc & & \tn % Row Count 13 (+ 1) \hhline{>{\arrayrulecolor{DarkBackground}}----} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{x{1.00694 cm} x{2.15119 cm} x{1.41887 cm} } \SetRowColor{DarkBackground} \mymulticolumn{3}{x{5.377cm}}{\bf\textcolor{white}{Common Type II Cations}} \tn % Row 0 \SetRowColor{LightBackground} Ion & Systematic Name & Older Name \tn % Row Count 1 (+ 1) % Row 1 \SetRowColor{white} Fe\textasciicircum{}3+\textasciicircum{} & iron(III) & ferric \tn % Row Count 2 (+ 1) % Row 2 \SetRowColor{LightBackground} Fe\textasciicircum{}2+\textasciicircum{} & iron(II) & ferrous \tn % Row Count 3 (+ 1) % Row 3 \SetRowColor{white} Cu\textasciicircum{}2+\textasciicircum{} & copper(II) & cupric \tn % Row Count 4 (+ 1) % Row 4 \SetRowColor{LightBackground} Cu\textasciicircum{}+\textasciicircum{} & copper(I) & cuprous \tn % Row Count 5 (+ 1) % Row 5 \SetRowColor{white} Co\textasciicircum{}3+\textasciicircum{} & cobalt(III) & cobaltic \tn % Row Count 6 (+ 1) % Row 6 \SetRowColor{LightBackground} Co\textasciicircum{}2+\textasciicircum{} & cobalt(II) & cobaltous \tn % Row Count 7 (+ 1) % Row 7 \SetRowColor{white} Sn\textasciicircum{}4+\textasciicircum{} & tin(IV) & stannic \tn % Row Count 8 (+ 1) % Row 8 \SetRowColor{LightBackground} Sn\textasciicircum{}2+\textasciicircum{} & tin(II) & stannous \tn % Row Count 9 (+ 1) % Row 9 \SetRowColor{white} Pb\textasciicircum{}4+\textasciicircum{} & lead(IV) & plumbic \tn % Row Count 10 (+ 1) % Row 10 \SetRowColor{LightBackground} Pb\textasciicircum{}2+\textasciicircum{} & lead(II) & plumbous \tn % Row Count 11 (+ 1) % Row 11 \SetRowColor{white} Hg\textasciicircum{}2+\textasciicircum{} & mercury(II) & mercuric \tn % Row Count 12 (+ 1) % Row 12 \SetRowColor{LightBackground} Hg2\textasciicircum{}2+\textasciicircum{} & mercury(I) & mercurous \tn % Row Count 13 (+ 1) \hhline{>{\arrayrulecolor{DarkBackground}}---} \SetRowColor{LightBackground} \mymulticolumn{3}{x{5.377cm}}{Mercury(I) ions always occur bound together in pairs to form Hg2\textasciicircum{}2+\textasciicircum{}.} \tn \hhline{>{\arrayrulecolor{DarkBackground}}---} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Nomenclature}} \tn \SetRowColor{LightBackground} \mymulticolumn{1}{p{5.377cm}}{\vspace{1px}\centerline{\includegraphics[width=5.1cm]{/web/www.cheatography.com/public/uploads/rubycitalan_1537706942_IMG_E2186.JPG}}} \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Common Polyatomic Ions.}} \tn \SetRowColor{LightBackground} \mymulticolumn{1}{p{5.377cm}}{\vspace{1px}\centerline{\includegraphics[width=5.1cm]{/web/www.cheatography.com/public/uploads/rubycitalan_1537729155_IMG_2189[1].PNG}}} \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Rules for Naming Acids}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{If the anion does not contain oxygen, the acid is named with the prefix {\emph{hydro-}} and the suffix {\emph{-ic}} attatched to the rootname of the element.} \tn % Row Count 3 (+ 3) % Row 1 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{Ex. HCl= {\emph{hydro}}-chlor-{\emph{ic}} acid} \tn % Row Count 4 (+ 1) % Row 2 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{2. When anions contain oxygen, the acid name is formed from the root name of the central element of the anion or the anion name with the suffix of {\emph{-ic}} or {\emph{-ous}}.} \tn % Row Count 8 (+ 4) % Row 3 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{When the anion name ends in {\emph{-ite}}, the suffix {\emph{-ic}} is used.} \tn % Row Count 10 (+ 2) % Row 4 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{(Ex. H2SO4 = SO4\textasciicircum{}2-\textasciicircum{}(sulfate) = Sulfric Acid)} \tn % Row Count 11 (+ 1) % Row 5 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{When the anion name ends in {\emph{-ite}}, the suffix {\emph{-ous}} is used in the acid name.} \tn % Row Count 13 (+ 2) % Row 6 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{(Ex. H2SO3 = SO3\textasciicircum{}2-\textasciicircum{} (sulfite) = Sulfurous acid)} \tn % Row Count 14 (+ 1) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Chemical Equations}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{We represent a chemical reaction by writing a {\bf{chemical equation}} in which the chemical reactions (the {\bf{reactants}}) are shown to the left of an arrow and the chemicals are formed by the reaction (the {\bf{products}}) are shown to the right of the arrow.} \tn % Row Count 6 (+ 6) % Row 1 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{In the process of balancing equations is that atoms are conserved in a chemical reaction.} \tn % Row Count 8 (+ 2) % Row 2 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{The identities (formulas) of the compounds must never be changed in balancing a chemical equation.} \tn % Row Count 10 (+ 2) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Balancing Equations}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{{\emph{Step 1}} Read the description of the chemical reaction.} \tn % Row Count 2 (+ 2) % Row 1 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{{\emph{Step 2}} Write the unbalanced equation that summarizes the information from step 1.} \tn % Row Count 4 (+ 2) % Row 2 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{{\emph{Step 3}} Balancing the equation by inspection, starting with the most complicated molecule. Proceed element by element to determine what coefficients are necessary so that the same number of each type of atom appears on both the reactant and the product side.} \tn % Row Count 10 (+ 6) % Row 3 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{{\emph{Step 4}} Check to that the coefficients used, give the same number of each type of atom on both sides of the arrow. Also check to see that the coefficients used are the smallest integers that give the balanced equations. This can be cone by determining whether all coefficients can be divided by the same integer to give a set of smaller integer coefficients.} \tn % Row Count 18 (+ 8) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} % That's all folks \end{multicols*} \end{document}