Cheatography

The $animate service provides rudimentary

DOM manipulation functions to insert,
remove and move elements within the
DOM, as well as adding and removing
classes. This service is the core service
used by the ngAnimate $animator service
which provides high-level animation hooks
for CSS and JavaScript.

Methods

enter(element, parent, after, [done]);
Inserts the element into the DOM either
after the after element or as the first child
within the parent element. Once complete,

the done() callback will be fired (if provided).

element, DOMElement: the element which
will be inserted into the DOM

parent, DOMElement. the parent element
which will append the element as a child (if
the after element is not present)

after, DOMElement. the sibling element
which will append the element after itself
done(optional), Function=: callback function
that will be called after the element has
been inserted into the DOM

move(element, parent, after, [done]);
Moves the position of the provided element
within the DOM to be placed either after the
after element or inside of the parent
element. Once complete, the done()
callback will be fired (if provided).

element, DOMElement: the element which
will be moved around within the DOM
parent. DOMElement: the parent element
where the element will be inserted into (if
the after element is not present)

after, DOMElement. the sibling element
where the element will be positioned next to
done(optional), Function=: the callback
function (if provided) that will be fired after
the element has been moved to its new
position

addClass(element, className, [done]);

Angular Js v1.3.0 Services Cheat Sheet
by Roman K. (Roman) via cheatography.com/19465/cs/2484/

animate (cont)

Adds the provided className CSS class
value to the provided element. Once
complete, the done() callback will be fired (if
provided).

element, DOMElement: the element which
will have the className value added to it
className, string. the CSS class which will
be added to the element

done(optional), Function=: the callback
function (if provided) that will be fired after
the className value has been added to the
element

removeClass(element, className, [done]);
Removes the provided className CSS
class value from the provided element.
Once complete, the done() callback will be
fired (if provided).

element, DOMElement: the element which
will have the className value removed
from it

className, string. the CSS class which will
be removed from the element
done(optional), Function=: the callback
function (if provided) that will be fired after
the className value has been removed
from the element

setClass(element, add, remove, [done]);
Adds and/or removes the given CSS
classes to and from the element. Once
complete, the done() callback will be fired (if
provided).

element, DOMElement. the element which
will have its CSS classes changed removed
from it

add, string. the CSS classes which will be
added to the element

remove, string. the CSS class which will be
removed from the element

done(optional), Function=: the callback
function (if provided) that will be fired after
the CSS classes have been set on the
element

cacheFactory

Factory that constructs Cache objects and
gives access to them.

Usage:

$cacheFactory(cacheld, [options]);
Arguments:

cacheld, sfring: Name or id of the newly
created cache.

options(optional), object. Options object that
specifies the cache behavior. Properties:
{number=} capacity — turns the cache into
LRU cache.

Returns:

object: Newly created cache object with the
following set of methods:

{object} info() — Returns id, size, and
options of cache.

{#} put({string} key, {} value) — Puts a new
key-value pair into the cache and returns it.
{4} get({string} key)* — Returns cached
value for key or undefined for cache miss.
{void} remove({string} key) — Removes a
key-value pair from the cache.

{void} removeAll() — Removes all cached
values.

{void} destroy() — Removes references to
this cache from $cacheFactory.

Methods:

info(); — Get information about all the
caches that have been created

Returns:

Object — key-value map of cacheld to the
result of calling cache#info

get(cacheld); — Get access to a cache
object by the cacheld used when it was
created.

Parameters:

cacheld,string— Name or id of a cache to
access.

Returns:

By Roman K. (Roman)
cheatography.com/roman/

Not published yet.
Last updated 11th May, 2016.
Page 1 of 9.

Sponsored by CrosswordCheats.com
Learn to solve cryptic crosswords!
http://crosswordcheats.com

http://www.cheatography.com/
http://www.cheatography.com/roman/
http://www.cheatography.com/roman/cheat-sheets/angular-js-v1-3-0-services
http://www.cheatography.com/roman/
http://crosswordcheats.com

Cheatography

cacheFactory (cont)

object. Cache object identified by the
cacheld or undefined if no such cache.

Compiles an HTML string or DOM into a
template and produces a template function,
which can then be used to link scope and
the template together.

Usage

$compile(element, transclude, maxPriority);
Arguments

element, (string | DOMElement): Element or
HTML string to compile into a template
function.

transclude, function(angular.Scope, cloneA-
ttachFn=):

function available to directives.

maxPriority, number. only apply directives
lower than given priority (Only effects the
root element(s), not their children)

Returns

function(scope, cloneAttachFn=): a link
function which is used to bind template (a
DOM element/tree) to a scope. Where:
scope - A Scope to bind to.

cloneAttachFn - If cloneAttachFn is
provided, then the link function will clone the
template and call the cloneAttachFn
function allowing the caller to attach the
cloned elements to the DOM document at
the appropriate place. The cloneAttachFn is
called as: cloneAttachFn(clonedElement,
scope) where:

clonedElement- is a clone of the original
element passed into the compiler.

scope - is the current scope with which the
linking function is working with.

Calling the linking function returns the
element of the template. It is either the
original element passed in, or the clone of
the element if the cloneAttachFn is
provided.

By Roman K. (Roman)
cheatography.com/roman/

Angular Js v1.3.0 Services Cheat Sheet
by Roman K. (Roman) via cheatography.com/19465/cs/2484/

interpolate

Compiles a string with markup into an
interpolation function. This service is used
by the HTML $compile service for data
binding.

Usage

Sinterpolate(text, [mustHaveExpression],
[trustedContext], [allOrNothing]);

text - {string} - The text with markup to
interpolate.

mustHaveExpression (optional) - {boolean}
- if set to true then the interpolation string
must have embedded expression in order
to return an interpolation function. Strings
with no embedded expression will return
null for the interpolation function.
trustedContext (optional) - {string} - when
provided, the returned function passes the
interpolated result through $sce.getTrusted-
(interpolatedResult, trustedContext) before
returning it. Refer to the $sce service that
provides Strict Contextual Escaping for
details.

allOrNothing (optional) - {boolean} - if true,
then the returned function returns undefined
unless all embedded expressions evaluate
to a value other than undefined.

Returns:

function(context) - an interpolation function
which is used to compute the interpolated
string. The function has these parameters:
- context: evaluation context for all expres-
sions embedded in the interpolated text
Methods:

startSymbol(); - Symbol to denote the start
of expression in the interpolated string.
Defaults to {{.

Use SinterpolateProvider#startSymbol to
change the symbol.

Returns:

{string} - start symbol.

interpolate (cont)

endSymbol(); - Symbol to denote the end of
expression in the interpolated string.
Defaults to }}.

Use $interpolateProvider#endSymbol to
change the symbol.

Converts Angular expression into a
function.

Usage

$parse(expression);

Arguments:

expression - {string} - String expression to
compile.

Returns:

function(context, locals) - a function which
represents the compiled expression:
context— {object} — an object against which
any expressions embedded in the strings
are evaluated against (typically a scope
object).

locals — {object=} — local variables context
object, useful for overriding values in
context.

The returned function also has the following
properties:

literal - {boolean} — whether the expres-
sion's top-level node is a JavaScript literal.
constant — {boolean} — whether the
expression is made entirely of JavaScript
constant literals.

assign — {?function(context, value)} — if the
expression is assignable, this will be set to
a function to change its value on the given
context.

Not published yet.
Last updated 11th May, 2016.
Page 2 of 9.

$controller service is responsible for instan-
tiating controllers.

Usage

$controller(constructor, locals);

Arguments

Sponsored by CrosswordCheats.com
Learn to solve cryptic crosswords!
http://crosswordcheats.com

http://www.cheatography.com/
http://www.cheatography.com/roman/
http://www.cheatography.com/roman/cheat-sheets/angular-js-v1-3-0-services
http://www.cheatography.com/roman/
http://crosswordcheats.com

Cheatography

Angular Js v1.3.0 Services Cheat Sheet
by Roman K. (Roman) via cheatography.com/19465/cs/2484/

constructor, (function() | string): If called
with a function then it's considered to be the
controller constructor function. Otherwise
it's considered to be a string which is used
to retrieve the controller constructor using
the following steps:

- check if a controller with given name is
registered via $controllerProvider

- check if evaluating the string on the
current scope returns a constructor

- if $controllerProvider#allowGlobals, check
window[constructor] on the global window
object (not recommended)

exceptionHandler

Any uncaught exception in angular expres-
sions is delegated to this service. The
default implementation simply delegates to
$log.error which logs it into the browser
console.

Example:
angular.module('exceptionOverride', []).fa-
ctory(‘$exceptionHandler', function () {f
return function (exception, cause) {
exception.message += (caused by " +
cause +")';’

throw exception;

I

i

This example will override the normal action
of $exceptionHandler, to make angular
exceptions fail hard when they happen,
instead of just logging to the console.
Usage

$exceptionHandler(exception, [cause]);
Arguments

exception, Error. Exception associated with
the error.

cause (optional), string: optional information
about the context in which the error was
thrown.

By Roman K. (Roman)
cheatography.com/roman/

$sce is a service that provides Strict
Contextual Escaping services to AngularJS.
Usage

$sce();

Methods:

isEnabled(); - Returns a boolean indicating
if SCE is enabled.

Returns:

Boolean - true if SCE is enabled, false
otherwise. If you want to set the value, you
have to do it at module config time on
$sceProvider.

parseAs(type, expression); - Converts
Angular expression into a function. This is
like $parse and is identical when the
expression is a literal constant. Otherwise,
it wraps the expression in a call to $sce.g-
etTrusted(type, result)

Parameters:

type - {string} - The kind of SCE context in
which this result will be used.

expression - {string} - String expression to
compile.

Returns:

function(context, locals) - a function which
represents the compiled expression:
context— {object} — an object against which
any expressions embedded in the strings
are evaluated against (typically a scope
object).

locals — {object=} — local variables context
object, useful for overriding values in
context.

trustAs(type, value); - Delegates to $sceDe-
legate.trustAs. As such, returns an object
that is trusted by angular for use in
specified strict contextual escaping contexts
(such as ng-bind-html, ng-include, any src
attribute interpolation, any dom event
binding attribute interpolation such as for
onclick, etc.) that uses the provided value.
See * $sce for enabling strict contextual
escaping.

Parameters:

type - {string} - The kind of context in which
this value is safe for use. e.g. url, resour-
ce_url, html, js and css.

value - {*} - The value that that should be
considered trusted/safe.

Returns

* - A value that can be used to stand in for
the provided value in places where Angular
expects a $sce.trustAs() return value.
trustAsHtml(value); - Shorthand method.
$sce.trustAsHtml(value) - $sceDelegate.tr-
ustAs($sce.HTML, value)

Parameters:

value - * - The value to trustAs.

Returns:

* - An object that can be passed to $sce.g-
etTrustedHtml(value) to obtain the original
value. (privileged directives only accept
expressions that are either literal constants
or are the return value of $sce.trustAs.)
trustAsUrl(value); - Shorthand method.
$sce.trustAsUrl(value) - $sceDelegate.tr-
ustAs($sce.URL, value)

Parameters:

value - * - The value to trustAs.

Returns:

* - An object that can be passed to $sce.g-
etTrustedUrl(value) to obtain the original
value. (privileged directives only accept
expressions that are either literal constants
or are the return value of $sce.trustAs.)
trustAsResourceUrl(value); - Shorthand
method. $sce.trustAsResourceUrl(value) -
$sceDelegate.trustAs($sce. RESOURC-
E_URL, value)

Parameters:

value - * - The value to trustAs.

Returns:

Not published yet.
Last updated 11th May, 2016.
Page 3 of 9.

Sponsored by CrosswordCheats.com
Learn to solve cryptic crosswords!
http://crosswordcheats.com

http://www.cheatography.com/
http://www.cheatography.com/roman/
http://www.cheatography.com/roman/cheat-sheets/angular-js-v1-3-0-services
http://www.cheatography.com/roman/
http://crosswordcheats.com

Cheatography

sce (cont)

* - An object that can be passed to $sce.g-
etTrustedResourceUrl(value) to obtain the
original value. (privileged directives only
accept expressions that are either literal
constants or are the return value of $sce.t-
rustAs.)

trustAsJs(value); - Shorthand method.
$sce.trustAsJs(value) - $sceDelegate.trust-
As($sce.JS, value)

Parameters:

value, * - The value to trustAs.

Returns:

* - An object that can be passed to $sce.g-
etTrustedJs(value) to obtain the original
value. (privileged directives only accept
expressions that are either literal constants
or are the return value of $sce.trustAs.)
getTrusted(type, maybeTrusted); -
Delegates to $sceDelegate.getTrusted. As
such, takes the result of a $sce.trustAs() call
and returns the originally supplied value if
the queried context type is a supertype of
the created type. If this condition isn't
satisfied, throws an exception.
Parameters:

type - {string} - The kind of context in which
this value is to be used.

maybeTrusted - {*} - The result of a prior
$sce.trustAs call.

Returns:

* - The value the was originally provided to
$sce.trustAs if valid in this context.
Otherwise, throws an exception.
getTrustedHtml(value); - Shorthand
method. $sce.getTrustedHtml(value) —
$sceDelegate.getTrusted($sce.HTML,
value)

Parameters:

value - {*} - The value to pass to $sce.getT-
rusted.

Returns:

Angular Js v1.3.0 Services Cheat Sheet
by Roman K. (Roman) via cheatography.com/19465/cs/2484/

sce (cont)

* - The return value of $sce.getTrusted($s-
ce.HTML, value)

getTrustedCss(value); - Shorthand method.

$sce.getTrustedCss(value) - $sceDeleg-
ate.getTrusted($sce.CSS, value)
Parameters

value - {*} - The value to pass to $sce.getT-
rusted.

Returns:

* - The return value of $sce.getTrusted($s-
ce.CSS, value)

getTrustedUrl(value); - Shorthand method.
$sce.getTrustedUrl(value) — $sceDeleg-
ate.getTrusted($sce.URL, value)
Parameters:

value - {*} - The value to pass to $sce.getT-
rusted.

Returns:

* - The return value of $sce.getTrusted($s-
ce.URL, value)
getTrustedResourceUrl(value); - Shorthand
method. $sce.getTrustedResourceUrl(-
value) — $sceDelegate.getTrusted($sce.R-
ESOURCE_URL, value)

Parameters:

value - {*} - The value to pass to $sceDe-
legate.getTrusted.

Returns:

* - The return value of $sce.getTrusted($s-
ce.RESOURCE_URL, value)
getTrustedJs(value); - Shorthand method.
$sce.getTrustedJs(value) - $sceDeleg-
ate.getTrusted($sce.JS, value)
Parameters:

value - * - The value to pass to $sce.getT-
rusted.

Returns:

* - The return value of $sce.getTrusted($s-
ce.JS, value)

By Roman K. (Roman)
cheatography.com/roman/

Not published yet.
Last updated 11th May, 2016.
Page 4 of 9.

sce (cont)

parseAsHtml(expression); - Shorthand
method. $sce.parseAsHtml(expression
string) — $sce.parseAs($sce. HTML, value)
Parameters:

expression - {string} - String expression to
compile.

Returns:

function(context, locals) - a function which
represents the compiled expression:
context— {object} — an object against which
any expressions embedded in the strings
are evaluated against (typically a scope
object).

locals — {object=} — local variables context
object, useful for overriding values in
context.

parseAsCss(expression); - Shorthand
method. $sce.parseAsCss(value) - $sce.p-
arseAs($sce.CSS, value)

Parameters:

expression - {string} - String expression to
compile.

Returns:

function(context, locals) - a function which
represents the compiled expression:
context— {object} — an object against which
any expressions embedded in the strings
are evaluated against (typically a scope
object).

locals — {object=} — local variables context
object, useful for overriding values in
context.

parseAsUrl(expression); - Shorthand
method. $sce.parseAsUrl(value) - $sce.p-
arseAs($sce.URL, value)

Parameters:

expression - {string} - String expression to
compile.

Returns:

function(context, locals) - a function which
represents the compiled expression:
context— {object} — an object against which
any expressions embedded in the strings
are evaluated against (typically a scope
object).

Sponsored by CrosswordCheats.com
Learn to solve cryptic crosswords!
http://crosswordcheats.com

http://www.cheatography.com/
http://www.cheatography.com/roman/
http://www.cheatography.com/roman/cheat-sheets/angular-js-v1-3-0-services
http://www.cheatography.com/roman/
http://crosswordcheats.com

Cheatography

sce (cont)

locals — {object=} — local variables context
object, useful for overriding values in
context.
parseAsResourceUrl(expression); -
Shorthand method. $sce.parseAsResour-
ceUrl(value) - $sce.parseAs($sce.RES-
OURCE_URL, value)

Parameters:

expression - {string} - String expression to
compile.

Returns:

function(context, locals) - a function which
represents the compiled expression:
context—- {object} — an object against which
any expressions embedded in the strings
are evaluated against (typically a scope
object).

locals — {object=} — local variables context
object, useful for overriding values in
context.

parseAsJs(expression); - Shorthand
method. $sce.parseAsJs(value) - $sce.p-
arseAs($sce.JS, value)

Parameters:

expression - {string} - String expression to
compile.

Returns:

function(context, locals) - a function which
represents the compiled expression:
context—- {object} — an object against which
any expressions embedded in the strings
are evaluated against (typically a scope
object).

locals — {object=} — local variables context
object, useful for overriding values in
context.

sceDelegate

$sceDelegate is a service that is used by
the $sce service to provide Strict Contextual
Escaping (SCE) services to AngularJS.
Methods:

By Roman K. (Roman)
cheatography.com/roman/

Angular Js v1.3.0 Services Cheat Sheet
by Roman K. (Roman) via cheatography.com/19465/cs/2484/

sceDelegate (cont)

trustAs(type, value); - Returns an object
that is trusted by angular for use in
specified strict contextual escaping contexts
(such as ng-bind-html, ng-include, any src
attribute interpolation, any dom event
binding attribute interpolation such as for
onclick, etc.) that uses the provided value.
See $sce for enabling strict contextual
escaping.

Parameters:

type - {string} - The kind of context in which
this value is safe for use. e.g. url, resour-
ceUrl, html, js and css.

value - {*} - The value that that should be
considered trusted/safe.

Returns:

*- A value that can be used to stand in for
the provided value in places where Angular
expects a $sce.trustAs() return value.
valueOf(value); - If the passed parameter
had been returned by a prior call to $sceDe-
legate.trustAs, returns the value that had
been passed to $sceDelegate.trustAs. If the
passed parameter is not a value that had
been returned by $sceDelegate.trustAs,
returns it as-is.

Parameters:

value - {*} - The result of a prior $sceDeleg-
ate.trustAs call or anything else.

Returns:

{*} - The value that was originally provided
to $sceDelegate.trustAs if value is the result
of such a call. Otherwise, returns value
unchanged.

getTrusted(type, maybeTrusted); - Takes
the result of a $sceDelegate.trustAs call and
returns the originally supplied value if the
queried context type is a supertype of the
created type. If this condition isn't satisfied,
throws an exception.

Parameters:

type - {string} - The kind of context in which
this value is to be used.

sceDelegate (cont)

maybeTrusted - {*} - The result of a prior
$sceDelegate.trustAs call.

Returns:

*- The value the was originally provided to
$sceDelegate.trustAs if valid in this context.
Otherwise, throws an exception.

filter (service)

Filters are used for formatting data
displayed to the user.

Usage

$filter(name);

name, String: Name of the filter function to
retrieve

Returns

Function: the filter function

The $http service is a core Angular service
that facilitates communication with the
remote HTTP servers via the browser's
XMLHttpRequest object or via JSONP.
Usage

$http(config);

Arguments

config, object Object describing the request
to be made and how it should be
processed. The object has following proper-
ties:

method - {string} - HTTP method (e.g.
'GET', 'POST!, etc)

url- {string} — Absolute or relative URL of
the resource that is being requested.
params — {Object.<string|Object>} — Map of
strings or objects which will be turned to ?
key1=value18&key2=value?2 after the url. If
the value is not a string, it will be JSONified.
data - {string|Object} — Data to be sent as
the request message data.

Not published yet.
Last updated 11th May, 2016.
Page 5 of 9.

Sponsored by CrosswordCheats.com
Learn to solve cryptic crosswords!
http://crosswordcheats.com

http://www.cheatography.com/
http://www.cheatography.com/roman/
http://www.cheatography.com/roman/cheat-sheets/angular-js-v1-3-0-services
http://www.cheatography.com/roman/
http://crosswordcheats.com

Cheatography

http (cont)

headers — {Object} — Map of strings or
functions which return strings representing
HTTP headers to send to the server. If the
return value of a function is null, the header
will not be sent.

xsrfHeaderName — {string} — Name of HTTP
header to populate with the XSRF token.
xsrfCookieName — {string} — Name of cookie
containing the XSRF token.
transformRequest— {function(data, header-
sGetter)|Array.<function(data, headersGe-
tter)>} — transform function or an array of
such functions. The transform function takes
the http request body and headers and
returns its transformed (typically serialized)
version.

transformResponse — {function(data,
headersGetter)|Array.<function(data,
headersGetter)>} — transform function or an
array of such functions. The transform
function takes the http response body and
headers and returns its transformed
(typically deserialized) version.

cache — {boolean|Cache} - If true, a default
$http cache will be used to cache the GET
request, otherwise if a cache instance built
with $cacheFactory, this cache will be used
for caching.

timeout — {number|Promise} — timeout in
milliseconds, or promise that should abort
the request when resolved.

withCredentials - {boolean} - whether to set
the withCredentials flag on the XHR object.
See requests with credentials for more
information.

responseType - {string} - see requestType.
Returns

HttpPromise: Returns a promise object with
the standard then method and two http
specific methods: success and error. The
then method takes two arguments a
success and an error callback which will be
called with a response object.

Angular Js v1.3.0 Services Cheat Sheet
by Roman K. (Roman) via cheatography.com/19465/cs/2484/

http (cont)

The success and error methods take a
single argument - a function that will be
called when the request succeeds or fails
respectively. The arguments passed into
these functions are destructured represent-
ation of the response object passed into the
then method. The response object has
these properties:. dafa— {string|Object} —
The response body transformed with the
transform functions.

status — {number} - HTTP status code of
the response.

headers — {function([headerName])} —
Header getter function.

config— {Object} — The configuration object
that was used to generate the request.
statusText — {string} — HTTP status text of
the response.

Methods

get(url, [config]);: Shortcut method to
perform GET request.

Parameters:

url— {string} — Relative or absolute URL
specifying the destination of the request
config(optional) — {Object} — Optional
configuration object

Returns:

HttpPromise — Future object

delete(url, [config]);: Shortcut method to
perform DELETE request.

Parameters

url— {string} — Relative or absolute URL
specifying the destination of the request
config (optional) — {Object}: Optional
configuration object

Returns

HtfpPromise — Future object

head(url, [config]); — Shortcut method to
perform HEAD request.

Parameters

http (cont)

url— {string} — Relative or absolute URL
specifying the destination of the request
config (optional) — {Object} — Optional
configuration object

Returns

HitpPromise — Future object

jsonp(url, [config]); — Shortcut method to
perform JSONP request.

Parameters

url— {string} — Relative or absolute URL
specifying the destination of the request.
The name of the callback should be the
string JSON_CALLBACK.

config (optional) — {Object} — Optional
configuration object

Returns

HitpPromise — Future object

post(url, data, [config]); — Shortcut method
to perform POST request.

Parameters

url— {string} — Relative or absolute URL
specifying the destination of the request
data— {*} — Request content

config (optional) — {Object} — Optional
configuration object

Returns

HttpPromise — Future object

put(url, data, [config]); — Shortcut method
to perform PUT request.

Parameters

url— {string} — Relative or absolute URL
specifying the destination of the request
data— {*} — Request content

config (optional) — {Object} — Optional
configuration object

Returns

HitpPromise — Future object

patch(url, data, [config]); — Shortcut
method to perform PATCH request.

By Roman K. (Roman)
cheatography.com/roman/

Not published yet.
Last updated 11th May, 2016.
Page 6 of 9.

Sponsored by CrosswordCheats.com
Learn to solve cryptic crosswords!
http://crosswordcheats.com

http://www.cheatography.com/
http://www.cheatography.com/roman/
http://www.cheatography.com/roman/cheat-sheets/angular-js-v1-3-0-services
http://www.cheatography.com/roman/
http://crosswordcheats.com

Cheatography

Parameters

url— {string} — Relative or absolute URL
specifying the destination of the request
data— {*} — Request content

config (optional) — {Object} — Optional
configuration object

Returns

HttpPromise — Future object

Properties

pendingRequests {Array.<Object>} — Array
of config objects for currently pending
requests. This is primarily meant to be used
for debugging purposes.

defaults — Runtime equivalent of the
$httpProvider.defaults property. Allows
configuration of default headers, withCrede-
ntials as well as request and response
transformations.

See "Setting HTTP Headers" and "Transf-
orming Requests and Responses" sections
above.

httpBackend

HTTP backend used by the service ($http)
that delegates to XMLHttpRequest object or
JSONP and deals with browser incompati-
bilities.

A promise/deferred implementation inspired
by Kris Kowal's Q.

Usage:

$q(resolver);

Arguments:

resolver - {function(function, function)} -
Function which is responsible for resolving
or rejecting the newly created promise. The
first parameter is a function which resolves
the promise, the second parameter is a
function which rejects the promise.
Returns:

Promise - The newly created promise.
Methods:

By Roman K. (Roman)
cheatography.com/roman/

Angular Js v1.3.0 Services Cheat Sheet
by Roman K. (Roman) via cheatography.com/19465/cs/2484/

q (cont)

defer(); - Creates a Deferred object which
represents a task which will finish in the
future.

Returns:

Deferred - Returns a new instance of
deferred.

reject(reason); - Creates a promise that is
resolved as rejected with the specified
reason. This api should be used to forward
rejection in a chain of promises. If you are
dealing with the last promise in a promise
chain, you don't need to worry about it.
When comparing deferreds/promises to the
familiar behavior of try/catch/throw, think of
reject as the throw keyword in JavaScript.
This also means that if you "catch" an error
via a promise error callback and you want to
forward the error to the promise derived
from the current promise, you have to "ret-
hrow" the error by returning a rejection
constructed via reject.. Parameters:

reason - {*} - Constant, message, exception
or an object representing the rejection
reason.

Returns:

Promise - Returns a promise that was
already resolved as rejected with the
reason.

when(value); - Wraps an object that might
be a value or a (3rd party) then-able
promise into a $q promise. This is useful
when you are dealing with an object that
might or might not be a promise, or if the
promise comes from a source that can't be
trusted.

Parameters:

value - {*} - Value or a promise

Returns:

Promise - Returns a promise of the passed
value or promise

all(promises); - Combines multiple
promises into a single promise that is
resolved when all of the input promises are
resolved.

q (cont)

Parameters:

promises - {Array.<Promise>Object.<Pro-
mise>} - An array or hash of promises.
Returns:

Promise - Returns a single promise that will
be resolved with an array/hash of values,
each value corresponding to the promise at
the same index/key in the promises array/-
hash. If any of the promises is resolved with
a rejection, this resulting promise will be
rejected with the same rejection value.

Angular's wrapper for window.setInterval.
The fn function is executed every delay
milliseconds.

Usage

Sinterval(fn, delay, [count], [invokeApply]);
Arguments:

fn - {function()} - A function that should be
called repeatedly.

delay - {number} - Number of milliseconds
between each function call.

count (optional) - {number} - Number of
times to repeat. If not set, or 0, will repeat
indefinitely. (default: 0)

invokeApply (optional) - {boolean} - If set to
false skips model dirty checking, otherwise
will invoke fn within the $apply block.
(default: true)

Returns:

promise - A promise which will be notified
on each iteration.

Methods:

cancel(promise); - Cancels a task
associated with the promise.

Parameters:

promise - {promise} - returned by the
$interval function.

Returns:

boolean - Returns true if the task was
successfully canceled.

Not published yet.
Last updated 11th May, 2016.
Page 7 of 9.

Sponsored by CrosswordCheats.com
Learn to solve cryptic crosswords!
http://crosswordcheats.com

http://www.cheatography.com/
http://www.cheatography.com/roman/
http://www.cheatography.com/roman/cheat-sheets/angular-js-v1-3-0-services
http://www.cheatography.com/roman/
http://crosswordcheats.com

Cheatography

Angular's wrapper for window.setTimeout.
The fn function is wrapped into a try/catch
block and delegates any exceptions to
$exceptionHandler service.

Usage:

$timeout(fn, [delay], [invokeApply]);
Arguments:

fn - {function()} - A function, whose
execution should be delayed.

delay, (optional) - {number} - Delay in millis-
econds.(default: 0)

invokeApply, (optional) - {boolean} - If set to
false skips model dirty checking, otherwise
will invoke fn within the $apply block.
(default: true)

Returns:

Promise - Promise that will be resolved
when the timeout is reached. The value this
promise will be resolved with is the return
value of the fn function.

Methods:

cancel([promise]); - Cancels a task
associated with the promise. As a result of
this, the promise will be resolved with a
rejection.

Parameters:

promise, (optional) - {Promise} - Promise
returned by the $timeout function.

Returns:

boolean - Returns true if the task hasn't
executed yet and was successfully
canceled.

A jQuery or jgLite wrapper for the browser's
window.document object.

A reference to the browser's window object.
While window is globally available in
JavaScript, it causes testability problems,
because it is a global variable. In angular
we always refer to it through the $window
service, so it may be overridden, removed
or mocked for testing.

By Roman K. (Roman)
cheatography.com/roman/

Angular Js v1.3.0 Services Cheat Sheet
by Roman K. (Roman) via cheatography.com/19465/cs/2484/

$locale service provides localization rules
for various Angular components. As of right
now the only public api is:

id — {string} — locale id formatted as langua-
geld-countryld (e.g. en-us)

The $location service parses the URL in the
browser address bar (based on the
window.location) and makes the URL
available to your application. Changes to
the URL in the address bar are reflected
into $location service and changes to
$location are reflected into the browser
address bar.

Methods:

absUrl(); - This method is getter only.
Return full url representation with all
segments encoded according to rules
specified in RFC 3986.

Returns:

string - full url

url([url], [replace]); - This method is getter /
setter. Return url (e.g. /path?a=b#hash)
when called without any parameter.
Change path, search and hash, when called
with parameter and return $location.
Parameters:

url (optional) - {string} - New url without
base prefix (e.g. /path?a=b#hash)

replace (optional) - {string} - The path that
will be changed

Returns:

{string} - url

protocol(); - This method is getter only.
Return protocol of current url.

Returns:

string - protocol of current url

host(); - This method is getter only. Return
host of current url.

Returns:

string - host of current url.

location (cont)

port(); - This method is getter only. Return
port of current url.

Returns:

Number - port

path([path]); - This method is getter / setter.
Return path of current url when called
without any parameter. Change path when
called with parameter and return $location.
Note: Path should always begin with
forward slash (/), this method will add the
forward slash if it is missing.

Parameters:

path (optional) - {string} - New path
Returns:

{string} - path

search(search, [paramValue])); - This
method is getter / setter. Return search part
(as object) of current url when called without
any parameter. Change search part when
called with parameter and return $location.
Parameters:

search - {stringObject.<string>0Object.<Arr-
ay.<string>>} - New search params - string
or hash object.

When called with a single argument the
method acts as a setter, setting the search
component of $location to the specified
value. If the argument is a hash object
containing an array of values, these values
will be encoded as duplicate search
parameters in the url.

paramValue (optional) - {stringArray.<stri-
ng>boolean} If search is a string, then
paramValue will override only a single
search property.

If paramValue is an array, it will override the
property of the search component of
$location specified via the first argument.

If paramValue is null, the property specified
via the first argument will be deleted.

Not published yet.
Last updated 11th May, 2016.
Page 8 of 9.

Sponsored by CrosswordCheats.com
Learn to solve cryptic crosswords!
http://crosswordcheats.com

http://www.cheatography.com/
http://www.cheatography.com/roman/
http://www.cheatography.com/roman/cheat-sheets/angular-js-v1-3-0-services
http://www.cheatography.com/roman/
http://crosswordcheats.com

Cheatography

location (cont)

If paramValue is true, the property specified
via the first argument will be added with no
value nor trailing equal sign.

Returns:

Object - If called with no arguments returns
the parsed search object. If called with one
or more arguments returns $location object
itself.

hash([hash]); - This method is getter /
setter. Return hash fragment when called
without any parameter. Change hash
fragment when called with parameter and
return $location.

Parameters:

hash (optional) - {string} - New hash
fragment

Returns:

string - hash

replace(); - If called, all changes to $location
during current $digest will be replacing
current history record, instead of adding new
one.

Events:

$locationChangeStart - Broadcasted before
a URL will change. This change can be
prevented by calling preventDefault method
of the event. See $rootScope.Scope for
more details about event object. Upon
successful change $locationChange-
Success is fired.

Type:

broadcast

Target:

root scope

$locationChangeSuccess

Broadcasted after a URL was changed.
Type:

broadcast

Target:

root scope

By Roman K. (Roman)
cheatography.com/roman/

Angular Js v1.3.0 Services Cheat Sheet
by Roman K. (Roman) via cheatography.com/19465/cs/2484/

anchorScroll

When called, it checks current value of
$location.hash() and scrolls to the related
element, according to rules specified in
Html5 spec.

Usage

Sancho rSc roll():;

Simple service for logging. Default implem-
entation safely writes the message into the
browser's console (if present).

Methods:

log(); - Write a log message

info(); - Write an information message
warn(); - Write a warning message

error(); - Write an error message

debug(); - Write a debug message

rootElement

The root element of Angular application.
This is either the element where ngApp was
declared or the element passed into angula-
r.bootstrap. The element represent the root
element of application. It is also the location
where the applications $injector service
gets published, it can be retrieved using
$rootElement.injector().

rootScope

Every application has a single root scope.
All other scopes are descendant scopes of
the root scope. Scopes provide separation
between the model and the view, via a
mechanism for watching the model for
changes. They also provide an event
emission/broadcast and subscription facility.

templateCache

The first time a template is used, it is
loaded in the template cache for quick
retrieval. You can load templates directly
into the cache in a script tag, or by
consuming the $templateCache service
directly.

Not published yet.
Last updated 11th May, 2016.
Page 9 of 9.

templateCache (cont)

Adding via the script tag:

<script type="text/ng-template" id="templa-
teld.html">

<p>This is the content of the template</p>
</script>

Adding via the $templateCache service:
var myApp = angular.module('myApp', []);
myApp.run(function($templateCache) {
$templateCache.put(‘templateld.html’, 'This
is the content of the template');

P&

To retrieve the template later, simply use it
in your HTML:

<div ng-include=""templateld.html' "></div>
or get it via Javascript:
$templateCache.get('templateld.html')

templateRequest

The $templateRequest service downloads
the provided template using $http and, upon
success, stores the contents inside of
$templateCache. If the HTTP request fails
or the response data of the HTTP request is
empty then a $compile error will be thrown
(the exception can be thwarted by setting
the 2nd parameter of the function to true).
Usage:

$templateRequest(tpl, [ignoreRequestE-
rror]);

Arguments:

tpl - {string} - The HTTP request template
URL

ignoreRequestError, (optional) - {boolean} -
Whether or not to ignore the exception
when the request fails or the template is
empty

Returns:

Promise - the HTTP Promise for the given.
Properties:

totalPendingRequests - {number} - total
amount of pending template requests being
downloaded.

Sponsored by CrosswordCheats.com
Learn to solve cryptic crosswords!
http://crosswordcheats.com

http://www.cheatography.com/
http://www.cheatography.com/roman/
http://www.cheatography.com/roman/cheat-sheets/angular-js-v1-3-0-services
http://www.cheatography.com/roman/
http://crosswordcheats.com

	Angular Js v1.3.0 Services Cheat Sheet - Page 1
	animate
	cacheF­actory

	Angular Js v1.3.0 Services Cheat Sheet - Page 2
	interp­olate
	compile
	parse
	controller

	Angular Js v1.3.0 Services Cheat Sheet - Page 3
	sce
	except­ion­Handler

	Angular Js v1.3.0 Services Cheat Sheet - Page 4
	Angular Js v1.3.0 Services Cheat Sheet - Page 5
	filter (service)
	http
	sceDel­egate

	Angular Js v1.3.0 Services Cheat Sheet - Page 6
	Angular Js v1.3.0 Services Cheat Sheet - Page 7
	interval
	httpBa­ckend
	q

	Angular Js v1.3.0 Services Cheat Sheet - Page 8
	timeout
	locale
	location
	document
	window

	Angular Js v1.3.0 Services Cheat Sheet - Page 9
	anchor­Scroll
	log
	templa­teR­equest
	rootEl­ement
	rootScope
	templa­teCache

