

Water,pH,Buffer Cheat Sheet

by rhettbro via cheatography.com/133961/cs/27499/

Water

the solvent for virtually all of biochemistry, ~70% of the mass within each cell is water

Carbon has four electrons in the outer shell - these hybridise into 4 sp³ hybrid orbitals as tetrahedron. If symmetrical, the angle is 109.28 degrees.

WATER AS A SOLVENT (substances such as household sugar dissolve in water, means that their molecules separate from each other, each becoming surrounded by water molecules.)

When a substance dissolves in a liquid, the mixture is termed a **solution**.

The dissolved substance is the **solute**, and the liquid that does the dissolving is the **solvent**.

Water is an excellent solvent for many substances because of its polar bonds.

Covalent bond	Inside a molecule
Hydrogen bond	between molecules
Polar bonds (H2O)	uneven charge
Non-polar bonds	even charge
(O2)	

Henderson-Hasselbalch equation

 $pH = pK_a + log\frac{\textit{[conjugate base]}}{\textit{[weak acid]}} \, (for weak acid)$

 $pOH = pK_b + log \frac{[conjugate acid]}{[weak base]}$ (for weak base)

pH (potential hydrogen)

The acidity of a solution is defined by the concentration of H+ ions it possesses.

pH scale $pH = -log10[H^+]$ pure water $[H^+] = 10^{-7}$ moles/liter pH (7) acids substance, proton (H^+)

donors

bases substance, proton acceptors (such as OH⁻)

Water can act as both a weak acid and a weak base.

pH (potential hydrogen) (cont)

Acids in an proton moves from aqueous enviro- one molecule to the nment other

pH is a measure of acidity (<7) or alkalinity (>7).

Higher amounts of results in a lower pH protons in a (acidic) solution

Lower amount of results in a higher pH protons (basic, or alkali)

Different Enzymes have different **optimal pH** according to their environment.

The strength of an acid is measured by its dissociation constant, Ka. The larger the Ka the more it dissociates and the stronger the acid.

The **pH** of a solution of a **weak acid** and **its conjugate base** is related to the **concentration of the acid and base** and the **pKa** by the Henderson-Hasselbalch equation.

When ph < pKa, the weak acid predominates. When pH > pKa, the conjugate base predominates.

Buffers

A solution which pH resists change upon addition of either small amounts of strong acid or strong base are added.

(consist of a weak acid and its conjugate base)

BUFFER CAPACITY - is related to the concentrations of the weak acid and its conjugate base,

The greater the concentration of the weak acid and its conjugate base, the greater the buffer capacity.

 $\rm H2PO4-/HPO4^{2-}$ is the principal buffer in cells, $\rm H2CO3/HCO^{3-}$ is an important buffer in blood.

Buffers work because the concentration of the weak acid and base are kept in the narrow window of the titration curve.

Biological Buffer Systems

Maintenance of intracellular pH is vital to all cells:

- 1. Enzyme-catalyzed reactions have optimal pH,
- Solubility of polar molecules depends on H-bond donors and acceptors,
- 3. Equilibrium between CO2 gas and dissolved HCO3- depends on pH.

Buffer systems in vivo are mainly based on:

- 1. Phosphate, concentration in millimolar range,
- 2. Bicarbonate, important for blood plasma,
- Histidine, efficient buffer at neutral pH.
 Buffer systems in vitro are often based on sulfonic acids of cyclic amines:

HEPES, PIPES, CHES.

Published 12th April, 2021. Last updated 14th April, 2021. Page 1 of 1. Sponsored by Readable.com Measure your website readability! https://readable.com