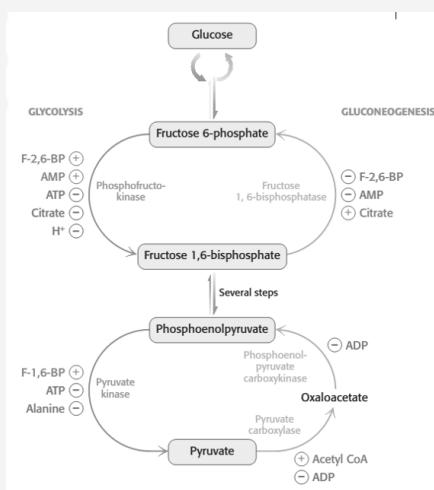


Generate free glucose-important control point


1. In most tissues, glucose 6-phosphate (G6P), instead of glucose, is the end product, and is used to synthesize glycogen.

Glucose 6-phosphatase is present only in the liver and to a lesser extent the kidney.

6 ATPs are spent in synthesizing glucose from pyruvate

Energy charge determines whether glycolysis or gluconeogenesis will be most active

GlucoSS and Glycolysis are Reciprocally Regulated

Lactate and Alanine

Lactate and alanine formed by contracting muscle are used by other organs

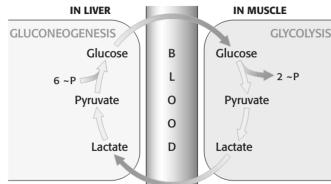
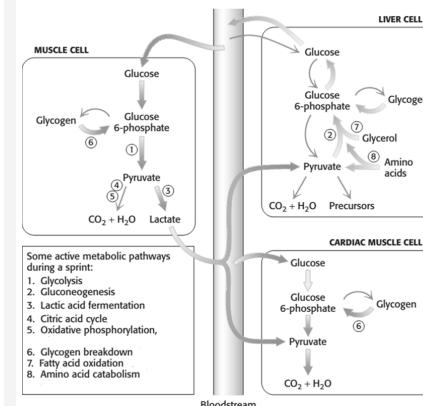
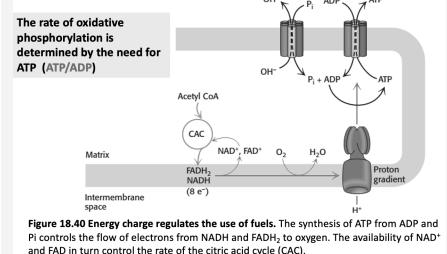



Figure 7. The Cori cycle. Lactate formed by active muscle is converted into glucose by the liver. This cycle shifts part of the metabolic burden of active muscle to the liver.


Cooperate between Gsis and Glusis during a sprint

Summary (cont)

key control points, allosteric activator/inhibitors

Regulation of Cellular Respiration Governed primarily

Summary

The place for eukaryotic oxidative phosphorylation

The driving force for oxidative phosphorylation

Respiratory chain, components, sequence of e- transfer, sites of H+ pump

ATP synthase, chemiosmotic hypothesis, binding change mechanism

Shuttles for molecules across the mitochondrial membranes (ATP/ADP, cytoplasmic NADH)

The regulation of cellular respiration (ATP/ADP, NAD+/NADH, FAD/FADH2)

Summary

Glycolysis Is an Energy-Conversion Pathway in Many Organisms

Glycolysis, 2 stages, 10 steps, 3 key steps, 2 ATPs, 1 NADH, significance

The Glycolytic Pathway Is Tightly Controlled

3 key steps, 3 key enzymes, allosteric activator/inhibitors

Glucose Can Be Synthesized from Non-carbohydrate Precursors

Gluconeogenesis, noncarbohydrate sources, four new reactions

Gluconeogenesis and Glycolysis Are Reciprocally Regulated

Published 14th April, 2021.

Last updated 14th April, 2021.

Page 1 of 1.

Sponsored by [Readable.com](https://readable.com)

Measure your website readability!

<https://readable.com>