\documentclass[10pt,a4paper]{article} % Packages \usepackage{fancyhdr} % For header and footer \usepackage{multicol} % Allows multicols in tables \usepackage{tabularx} % Intelligent column widths \usepackage{tabulary} % Used in header and footer \usepackage{hhline} % Border under tables \usepackage{graphicx} % For images \usepackage{xcolor} % For hex colours %\usepackage[utf8x]{inputenc} % For unicode character support \usepackage[T1]{fontenc} % Without this we get weird character replacements \usepackage{colortbl} % For coloured tables \usepackage{setspace} % For line height \usepackage{lastpage} % Needed for total page number \usepackage{seqsplit} % Splits long words. %\usepackage{opensans} % Can't make this work so far. Shame. Would be lovely. \usepackage[normalem]{ulem} % For underlining links % Most of the following are not required for the majority % of cheat sheets but are needed for some symbol support. \usepackage{amsmath} % Symbols \usepackage{MnSymbol} % Symbols \usepackage{wasysym} % Symbols %\usepackage[english,german,french,spanish,italian]{babel} % Languages % Document Info \author{ReSummit} \pdfinfo{ /Title (ap-physics-formulas-kinematic.pdf) /Creator (Cheatography) /Author (ReSummit) /Subject (AP Physics Formulas (Kinematic) Cheat Sheet) } % Lengths and widths \addtolength{\textwidth}{6cm} \addtolength{\textheight}{-1cm} \addtolength{\hoffset}{-3cm} \addtolength{\voffset}{-2cm} \setlength{\tabcolsep}{0.2cm} % Space between columns \setlength{\headsep}{-12pt} % Reduce space between header and content \setlength{\headheight}{85pt} % If less, LaTeX automatically increases it \renewcommand{\footrulewidth}{0pt} % Remove footer line \renewcommand{\headrulewidth}{0pt} % Remove header line \renewcommand{\seqinsert}{\ifmmode\allowbreak\else\-\fi} % Hyphens in seqsplit % This two commands together give roughly % the right line height in the tables \renewcommand{\arraystretch}{1.3} \onehalfspacing % Commands \newcommand{\SetRowColor}[1]{\noalign{\gdef\RowColorName{#1}}\rowcolor{\RowColorName}} % Shortcut for row colour \newcommand{\mymulticolumn}[3]{\multicolumn{#1}{>{\columncolor{\RowColorName}}#2}{#3}} % For coloured multi-cols \newcolumntype{x}[1]{>{\raggedright}p{#1}} % New column types for ragged-right paragraph columns \newcommand{\tn}{\tabularnewline} % Required as custom column type in use % Font and Colours \definecolor{HeadBackground}{HTML}{333333} \definecolor{FootBackground}{HTML}{666666} \definecolor{TextColor}{HTML}{333333} \definecolor{DarkBackground}{HTML}{FF0000} \definecolor{LightBackground}{HTML}{FFEFEF} \renewcommand{\familydefault}{\sfdefault} \color{TextColor} % Header and Footer \pagestyle{fancy} \fancyhead{} % Set header to blank \fancyfoot{} % Set footer to blank \fancyhead[L]{ \noindent \begin{multicols}{3} \begin{tabulary}{5.8cm}{C} \SetRowColor{DarkBackground} \vspace{-7pt} {\parbox{\dimexpr\textwidth-2\fboxsep\relax}{\noindent \hspace*{-6pt}\includegraphics[width=5.8cm]{/web/www.cheatography.com/public/images/cheatography_logo.pdf}} } \end{tabulary} \columnbreak \begin{tabulary}{11cm}{L} \vspace{-2pt}\large{\bf{\textcolor{DarkBackground}{\textrm{AP Physics Formulas (Kinematic) Cheat Sheet}}}} \\ \normalsize{by \textcolor{DarkBackground}{ReSummit} via \textcolor{DarkBackground}{\uline{cheatography.com/52223/cs/14186/}}} \end{tabulary} \end{multicols}} \fancyfoot[L]{ \footnotesize \noindent \begin{multicols}{3} \begin{tabulary}{5.8cm}{LL} \SetRowColor{FootBackground} \mymulticolumn{2}{p{5.377cm}}{\bf\textcolor{white}{Cheatographer}} \\ \vspace{-2pt}ReSummit \\ \uline{cheatography.com/resummit} \\ \end{tabulary} \vfill \columnbreak \begin{tabulary}{5.8cm}{L} \SetRowColor{FootBackground} \mymulticolumn{1}{p{5.377cm}}{\bf\textcolor{white}{Cheat Sheet}} \\ \vspace{-2pt}Published 23rd October, 2020.\\ Updated 23rd October, 2020.\\ Page {\thepage} of \pageref{LastPage}. \end{tabulary} \vfill \columnbreak \begin{tabulary}{5.8cm}{L} \SetRowColor{FootBackground} \mymulticolumn{1}{p{5.377cm}}{\bf\textcolor{white}{Sponsor}} \\ \SetRowColor{white} \vspace{-5pt} %\includegraphics[width=48px,height=48px]{dave.jpeg} Measure your website readability!\\ www.readability-score.com \end{tabulary} \end{multicols}} \begin{document} \raggedright \raggedcolumns % Set font size to small. Switch to any value % from this page to resize cheat sheet text: % www.emerson.emory.edu/services/latex/latex_169.html \footnotesize % Small font. \begin{multicols*}{2} \begin{tabularx}{8.4cm}{x{3.6 cm} x{4.4 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{8.4cm}}{\bf\textcolor{white}{Kinematics 2D Motion}} \tn % Row 0 \SetRowColor{LightBackground} V = V`0` + at & V`0` = Initial velocity of object\{\{nl\}\}V = Final velocity of object\{\{nl\}\}a = Acceleration of object\{\{nl\}\}t = Time \tn % Row Count 6 (+ 6) % Row 1 \SetRowColor{white} V\textasciicircum{}2\textasciicircum{} = V`0`\textasciicircum{}2\textasciicircum{} + 2aΔx\{\{nobreak\}\} & V`0` = Initial velocity of object\{\{nl\}\}V = Final velocity of object\{\{nl\}\}a = Acceleration of object\{\{nl\}\}Δx / Δy = Change in position \tn % Row Count 13 (+ 7) % Row 2 \SetRowColor{LightBackground} Δx = V`0`t + $\frac{1}{2}$at\textasciicircum{}2\textasciicircum{} & Δx / Δy = Change in position\{\{nl\}\}V`0` = Initial velocity\{\{nl\}\}t = Time\{\{nl\}\}a = Acceleration \tn % Row Count 18 (+ 5) % Row 3 \SetRowColor{white} F = ma & F = Force from object\{\{nl\}\}m = Mass of object\{\{nl\}\}a = Acceleration of object \tn % Row Count 22 (+ 4) % Row 4 \SetRowColor{LightBackground} F`f` = μN & F`f` = Force of friction\{\{nl\}\}μ = Coefficient of friction\{\{nl\}\}N = Normal force \tn % Row Count 26 (+ 4) \hhline{>{\arrayrulecolor{DarkBackground}}--} \SetRowColor{LightBackground} \mymulticolumn{2}{x{8.4cm}}{Note: Some formulas may involve BOTH the x and y directions, as well as incorporate other formulas outside kinematics.} \tn \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{8.4cm}{x{3.76 cm} x{4.24 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{8.4cm}}{\bf\textcolor{white}{Momentum}} \tn % Row 0 \SetRowColor{LightBackground} FΔt = Δp = m`V` - m`V0`\{\{nobreak\}\} & FΔt = Δp = Impulse\{\{nl\}\}m`V` = Final momentum\{\{nl\}\}m`V0` = Initial momentum\{\{nobreak\}\} \tn % Row Count 5 (+ 5) % Row 1 \SetRowColor{white} \mymulticolumn{2}{x{8.4cm}}{m`Vbefore` - m`V0before` = m`Vafter` - m`V0after`\{\{ac\}\}} \tn % Row Count 7 (+ 2) \hhline{>{\arrayrulecolor{DarkBackground}}--} \SetRowColor{LightBackground} \mymulticolumn{2}{x{8.4cm}}{Note: Momentum is ALWAYS conserved. You may need to note that the momentum before is equal to the momentum after.} \tn \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{8.4cm}{x{4 cm} x{4 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{8.4cm}}{\bf\textcolor{white}{Energy}} \tn % Row 0 \SetRowColor{LightBackground} W = Fd & W = Work done\{\{nl\}\}F = Force applied\{\{nl\}\}d = Distance travelled \tn % Row Count 4 (+ 4) % Row 1 \SetRowColor{white} W = ΔKE = $\frac{1}{2}$mV\textasciicircum{}2\textasciicircum{} - $\frac{1}{2}$mV`0`\textasciicircum{}2\textasciicircum{}\{\{nobreak\}\} & W = Work done\{\{nl\}\}m = Mass of object\{\{nl\}\}V = Final velocity\{\{nl\}\}V`0` = Initial velocity\{\{nobreak\}\} \tn % Row Count 10 (+ 6) % Row 2 \SetRowColor{LightBackground} U`g` = mgh & U`g` = Work done by gravity\{\{nl\}\}m = Mass\{\{nl\}\}g = Gravity\{\{nl\}\}h / d = Height or distance traveled \tn % Row Count 15 (+ 5) % Row 3 \SetRowColor{white} F`S` = kx & F`S` = Force of spring (Restored Force)\{\{nl\}\}k = Spring coefficient\{\{nl\}\}x = Distance from equilibrium \tn % Row Count 21 (+ 6) % Row 4 \SetRowColor{LightBackground} W`S` = U`S` = $\frac{1}{2}$kx\textasciicircum{}2\textasciicircum{} & W`S` = Work done by spring\{\{nl\}\}k = Spring coefficient\{\{nl\}\}x = Distance from equilibrium \tn % Row Count 26 (+ 5) % Row 5 \SetRowColor{white} KE = $\frac{1}{2}$mV\textasciicircum{}2\textasciicircum{} & KE = Kinetic Energy\{\{nl\}\}m = Mass\{\{nl\}\}v = Velocity of object \tn % Row Count 30 (+ 4) \end{tabularx} \par\addvspace{1.3em} \vfill \columnbreak \begin{tabularx}{8.4cm}{x{4 cm} x{4 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{8.4cm}}{\bf\textcolor{white}{Energy (cont)}} \tn % Row 6 \SetRowColor{LightBackground} KE + U`g` + U`S` =\{\{nl\}\}KE + U`g` +U`S` + W & KE = Kinetic Energy (is the object moving?)\{\{nl\}\}U`g` = Work done by gravity (is the object above where you set x = 0?)\{\{nl\}\}U`S` = Work done by spring (is a spring involved?)\{\{nl\}\}W = Friction (did energy go to friction?) \tn % Row Count 12 (+ 12) \hhline{>{\arrayrulecolor{DarkBackground}}--} \SetRowColor{LightBackground} \mymulticolumn{2}{x{8.4cm}}{Note: Energy is {\bf{SOMETIMES}} conserved depending on the situation. {\bf{Inelastic}} collisions cannot apply the conservation of energy because of the loss of energy. However, you can apply the conservation of energy for {\bf{elastic}} collisions.} \tn \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{8.4cm}{x{4 cm} x{4 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{8.4cm}}{\bf\textcolor{white}{Rotational Motion}} \tn % Row 0 \SetRowColor{LightBackground} ω = ω`0` + αt & ω`0` = Angular initial velocity\{\{nl\}\}ω = Angular final velocity\{\{nl\}\}α = Angular acceleration\{\{nl\}\}t = Time \tn % Row Count 6 (+ 6) % Row 1 \SetRowColor{white} ω\textasciicircum{}2\textasciicircum{} = ω`0`\textasciicircum{}2\textasciicircum{} + 2αθ\{\{nobreak\}\} & ω`0` = Angular initial velocity\{\{nl\}\}ω = Angular final velocity\{\{nl\}\}α = Angular acceleration\{\{nl\}\}θ = Angular change in position \tn % Row Count 13 (+ 7) % Row 2 \SetRowColor{LightBackground} θ = ω`0`t + $\frac{1}{2}$αt\textasciicircum{}2\textasciicircum{} & θ = Angular change in position\{\{nl\}\}ω`0` = Angular initial velocity\{\{nl\}\}t = Time\{\{nl\}\}α = Angular acceleration \tn % Row Count 19 (+ 6) % Row 3 \SetRowColor{white} V`T` = rω & V`T` = Tangential (Linear) velocity\{\{nl\}\}r = Radius \{\{nl\}\}ω = Angular final velocity \tn % Row Count 24 (+ 5) % Row 4 \SetRowColor{LightBackground} a`T` = rα & a`T` = Tangential (Linear) acceleration\{\{nl\}\}r = Radius\{\{nl\}\}α = Angular acceleration \tn % Row Count 29 (+ 5) % Row 5 \SetRowColor{white} a`C` = V`T`\textasciicircum{}2\textasciicircum{} / r & a`C` = Centripetal acceleration\{\{nl\}\}V`T` = Tangential (Linear) velocity\{\{nl\}\}r = Radius \tn % Row Count 34 (+ 5) \end{tabularx} \par\addvspace{1.3em} \vfill \columnbreak \begin{tabularx}{8.4cm}{x{4 cm} x{4 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{8.4cm}}{\bf\textcolor{white}{Rotational Motion (cont)}} \tn % Row 6 \SetRowColor{LightBackground} a`r` = rω\textasciicircum{}2\textasciicircum{} & a`r` = Radial Acceleration\{\{nl\}\}r = Radius\{\{nl\}\}ω = Angular velocity \tn % Row Count 4 (+ 4) % Row 7 \SetRowColor{white} τ = F`⊥`d & τ = Torque\{\{nl\}\}F`⊥` = Perpendicular Forces\{\{nl\}\}d= Distance from Pivot Point \tn % Row Count 8 (+ 4) % Row 8 \SetRowColor{LightBackground} I = Σmr\textasciicircum{}2 & I = Moment of Inertia (Rotational Moment / Rotational Intertia)\{\{nl\}\}Σmr\textasciicircum{}2\textasciicircum{} = Total of each Mass x Radius Squared \tn % Row Count 14 (+ 6) % Row 9 \SetRowColor{white} KE`C` = 1/2(I)ω\textasciicircum{}2\textasciicircum{} & KE`C` = Kinetic Circular Energy\{\{nl\}\}I = Moment of Inertia (Rotational Moment / Rotational Intertia)\{\{nl\}\}ω = Angular velocity \tn % Row Count 21 (+ 7) % Row 10 \SetRowColor{LightBackground} τ = Iα & τ = Torque\{\{nl\}\}I = Moment of Inertia (Rotational Moment / Rotational Intertia)\{\{nl\}\}α = Angular acceleration \tn % Row Count 27 (+ 6) % Row 11 \SetRowColor{white} KE`R` = 1/2 I`P`ω\textasciicircum{}2\textasciicircum{} = 1/2(I`COM` + mh\textasciicircum{}h\textasciicircum{})ω\textasciicircum{}2\textasciicircum{}\{\{nl\}\}=1/2(m(V`COM`)\textasciicircum{}2\textasciicircum{}) + 1/2Iω\textasciicircum{}2\textasciicircum{} & KE`R` = Kinetic Rolling Energy\{\{nl\}\}1/2(m(V`COM`)\textasciicircum{}2\textasciicircum{}) = Sliding Equation\{\{nl\}\}1/2Iω\textasciicircum{}2\textasciicircum{} = Rotation Equation \tn % Row Count 33 (+ 6) \end{tabularx} \par\addvspace{1.3em} \vfill \columnbreak \begin{tabularx}{8.4cm}{x{4 cm} x{4 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{8.4cm}}{\bf\textcolor{white}{Rotational Motion (cont)}} \tn % Row 12 \SetRowColor{LightBackground} l = mrω & l = Momentum of a particle \tn % Row Count 2 (+ 2) % Row 13 \SetRowColor{white} L = Iω & L = Momentum of a rigid body (not a particle) \tn % Row Count 5 (+ 3) \hhline{>{\arrayrulecolor{DarkBackground}}--} \SetRowColor{LightBackground} \mymulticolumn{2}{x{8.4cm}}{NOTE: \newline - You may need to consider that ω = dθ / dt and α = dω / dt. \newline - Account for all objects rotating the pivot point when calculating I. \newline - Momentum is {\bf{ALWAYS}} conserved.} \tn \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} % That's all folks \end{multicols*} \end{document}