

AP Physics Formulas (Kinematic) Cheat Sheet by ReSummit via cheatography.com/52223/cs/14186/

Kinematics 2D Motion	
V = V0 + at	V0 = Initial velocity of object V = Final velocity of object a = Acceleration of object t = Time
$V^2 = V_0^2 + 2a\Delta x$	V0 = Initial velocity of object V = Final velocity of object a = Acceleration of object $\Delta x / \Delta y$ = Change in position
$\Delta x = V_0 t + \frac{1}{2} a t^2$	$\Delta x / \Delta y$ = Change in position V0 = Initial velocity t = Time a = Acceleration
F = ma	F = Force from object m = Mass of object a = Acceleration of object
Ff = μN	Ff = Force of friction μ = Coefficient of friction N = Normal force
Note: Some formulas may involve BOTH the x and y directions, as	

Note: Some formulas may involve BOTH the x and y directions, as	
well as incorporate other formulas outside kinematics.	

Momentum	
$F\Delta t = \Delta p = m\nabla - m\nabla 0$	$F\Delta t = \Delta p = Impulse$
	m∨ = Final momentum
	m∨0 = Initial momentum

Note: Momentum is ALWAYS conserved. You may need to note that the momentum before is equal to the momentum after.

mVbefore - mV0before = mVafter - mV0after

Energy		
W = Fd	W = Work done	
	F = Force applied	
	d = Distance travelled	

Energy (cont)	
$W = \Delta KE = \frac{1}{2} \text{mV}^2 - \frac{1}{2} \text{mV} 0^2$	W = Work done m = Mass of object V = Final velocity V0 = Initial velocity
Ug = mgh	Ug = Work done by gravity m = Mass g = Gravity h / d = Height or distance traveled
Fs = kx	FS = Force of spring (Restored Force) k = Spring coefficient x = Distance from equilibrium
$Ws = Us = \frac{1}{2}kx^2$	Ws = Work done by spring k = Spring coefficient x = Distance from equilibrium
$KE = \frac{1}{2}mV^2$	KE = Kinetic Energy m = Mass v = Velocity of object
KE + Ug + Us = KE + Ug +Us + W	KE = Kinetic Energy (is the object moving?) Ug = Work done by gravity (is the object above where you set x = 0?) US = Work done by spring (is a spring involved?) W = Friction (did energy go to friction?)

Note: Energy is **SOMETIMES** conserved depending on the situation. **Inelastic** collisions cannot apply the conservation of energy because of the loss of energy. However, you can apply the conservation of energy for **elastic** collisions.

By **ReSummit** cheatography.com/resummit/

Published 23rd October, 2020. Last updated 23rd October, 2020. Page 1 of 2. Sponsored by **Readable.com**Measure your website readability!
https://readable.com

AP Physics Formulas (Kinematic) Cheat Sheet by ReSummit via cheatography.com/52223/cs/14186/

Rotational Motion	
$\omega = \omega 0 + \alpha t$	ω_0 = Angular initial velocity ω = Angular final velocity α = Angular acceleration t = Time
$\omega^2 = \omega 0^2 + 2\alpha\theta$	ω_0 = Angular initial velocity ω = Angular final velocity α = Angular acceleration θ = Angular change in position
$\theta = \omega_0 t + \frac{1}{2}\alpha t^2$	θ = Angular change in position ω_0 = Angular initial velocity t = Time α = Angular acceleration
$V_T = r\omega$	$V_{\mathbb{T}}$ = Tangential (Linear) velocity r = Radius ω = Angular final velocity
aT = rα	$a_{\rm T}$ = Tangential (Linear) acceleration r = Radius α = Angular acceleration
$aC = V_T^2 / r$	aC = Centripetal acceleration VT = Tangential (Linear) velocity r = Radius
$ar = r\omega^2$	ar = Radial Acceleration r = Radius ω = Angular velocity

Rotational Motion (cont)	
τ = F⊥d	τ = TorqueF⊥ = Perpendicular Forcesd= Distance from Pivot Point
I = Σmr^2	I = Moment of Inertia (Rotational Moment / Rotational Intertia) $\Sigma mr^2 = Total \ of \ each \ Mass \ x \ Radius$ Squared
$KEC = 1/2(I)\omega^2$	KEC = Kinetic Circular Energy I = Moment of Inertia (Rotational Moment / Rotational Intertia) $\omega = \text{Angular velocity}$
τ = Ια	τ = Torque I = Moment of Inertia (Rotational Moment / Rotational Intertia) α = Angular acceleration
KER = $1/2 \text{ IP}\omega^2 = 1/2(\text{IC})$ OM + mh^h) ω^2 = $1/2(m(\text{VCOM})^2)$ + $1/2l\omega^2$	KER = Kinetic Rolling Energy $1/2(m(VCOM)^2)$ = Sliding Equation $1/2I\omega^2$ = Rotation Equation
I = mrω	I = Momentum of a particle
L = Iω	L = Momentum of a rigid body (not a particle)
NOTE:	

- You may need to consider that ω = d θ / dt and α = d ω / dt.
- Account for all objects rotating the pivot point when calculating I.
- Momentum is **ALWAYS** conserved.

By **ReSummit** cheatography.com/resummit/

Published 23rd October, 2020. Last updated 23rd October, 2020. Page 2 of 2. Sponsored by **Readable.com**Measure your website readability!
https://readable.com