Cheatography

AP Physics Formulas (Kinematic) Cheat Sheet by ReSummit via cheatography.com/52223/cs/14186/

Kinematics 2D Motion		Energy (cont)	
V = V0 + at	V0 = Initial velocity of object V = Final velocity of object a = Acceleration of object t = Time	$W = \Delta KE = \frac{1}{2}mV^2 - \frac{1}{2}mV0^2$	W = Work done m = Mass of object V = Final velocity V0 = Initial velocity
$V^2 = V0^2 + 2a\Delta x$	V0 = Initial velocity of object V = Final velocity of object a = Acceleration of object $\Delta x / \Delta y$ = Change in position	Ug = mgh	Ug = Work done by gravity m = Mass g = Gravity h / d = Height or distance traveled
$\Delta x = V_0 t + \frac{1}{2} a t^2$	$\Delta x / \Delta y$ = Change in position V0 = Initial velocity t = Time	Fs = kx	Fs = Force of spring (Restored Force) k = Spring coefficient x = Distance from equilibrium
F = ma	a = Acceleration F = Force from object m = Mass of object	$Ws = Us = \frac{1}{2}kx^2$	Ws = Work done by spring k = Spring coefficient x = Distance from equilibrium
Ff = µN	a = Acceleration of object Ff = Force of friction μ = Coefficient of friction	$KE = \frac{1}{2}mV^2$	KE = Kinetic Energy m = Mass v = Velocity of object
N = Normal force Note: Some formulas may involve BOTH the x and y directions, as well as incorporate other formulas outside kinematics.		KE + Ug + Us = KE + Ug +Us + W	 KE = Kinetic Energy (is the object moving?) Ug = Work done by gravity (is the object above where you set x = 0?) US = Work done by spring (is a spring involved?)
$F\Delta t = \Delta p = mV - mV0$	$F\Delta t = \Delta p = Impulse$ mV = Final momentum mV0 = Initial momentum		W = Friction (did energy go to friction?)
MVbefore - MV0before = MVafter - MV0after Note: Momentum is ALWAYS conserved. You may need to note that the momentum before is equal to the momentum after.		Note: Energy is SOMETIMES conserved depending on the situation. Inelastic collisions cannot apply the conservation of energy because of the loss of energy. However, you can apply the conservation of energy for elastic collisions.	
Energy			
W = Fd W F	/ = Work done = Force applied = Distance travelled		
By ReSu	mmit Published 23rd Octob	er, 2020. Spo	nsored by Readable.com

cheatography.com/resummit/

Published 23rd October, 2020. Last updated 23rd October, 2020. Page 1 of 2. Sponsored by **Readable.com** Measure your website readability! https://readable.com

Cheatography

AP Physics Formulas (Kinematic) Cheat Sheet by ReSummit via cheatography.com/52223/cs/14186/

Rotational Motion		Rotational Motion (cont)	
$\omega = \omega 0 + \alpha t$	$ω_0$ = Angular initial velocity ω = Angular final velocity α = Angular acceleration t = Time	τ = F⊥d	τ = Torque F⊥ = Perpendicular Forces d= Distance from Pivot Point
$\omega^2 = \omega 0^2 + 2\alpha \theta$	$ω_0$ = Angular initial velocity ω = Angular final velocity α = Angular acceleration	I = Σmr^2	I = Moment of Inertia (Rotational Moment / Rotational Intertia) Σmr ² = Total of each Mass x Radius Squared
$\theta = \omega_0 t + \frac{1}{2} \alpha t^2$	θ = Angular change in position θ = Angular change in position $\omega 0$ = Angular initial velocity t = Time	$KE_C = 1/2(I)\omega^2$	KEC = Kinetic Circular Energy I = Moment of Inertia (Rotational Moment / Rotational Intertia) ω = Angular velocity
VT = rw	$\label{eq:alpha} \begin{split} \alpha &= \text{Angular acceleration} \\ V_{\mathrm{T}} &= \text{Tangential (Linear) velocity} \\ r &= \text{Radius} \\ \omega &= \text{Angular final velocity} \end{split}$	τ = Ια	 τ = Torque I = Moment of Inertia (Rotational Moment / Rotational Intertia) α = Angular acceleration
aπ = rα	a_{T} = Tangential (Linear) acceleration r = Radius α = Angular acceleration	$KER = 1/2 IP\omega^{2} = 1/2(ICOM + mh^{h})\omega^{2}$ $= 1/2(m(VCOM)^{2}) + 1/2(m^{2})^{2}$	KE_R = Kinetic Rolling Energy 1/2(m(V _{COM}) ²) = Sliding Equation 1/2I ω ² = Rotation Equation
ac = VT² / r	ac = Centripetal acceleration VT = Tangential (Linear) velocity r = Radius	$I = mr\omega$ $L = I\omega$	I = Momentum of a particle L = Momentum of a rigid body (not a
$ar = r\omega^2$	ar = Radial Acceleration		particle)
	r = Radius ω = Angular velocity	NOTE: - You may need to consider that $\omega = d\theta / dt$ and $\alpha = d\omega / dt$. - Account for all objects rotating the pivot point when calculating I.	

- Momentum is ALWAYS conserved.

By **ReSummit** cheatography.com/resummit/

Published 23rd October, 2020. Last updated 23rd October, 2020. Page 2 of 2. Sponsored by **Readable.com** Measure your website readability! https://readable.com