Identities

$\csc \theta=\frac{1}{\sin \theta}$
$\sec \theta=\frac{1}{\cos \theta}$ $\cos ^{2} \theta+\sin ^{2} \theta=1$
$\begin{array}{ll}\cos \theta=\frac{1}{\tan \theta} & 1+\tan ^{2} \theta=\sec ^{2} \theta \\ 1+\cot ^{2} \theta=\csc ^{2} \theta\end{array}$
$\tan \theta=\frac{\sin \theta}{\cos \theta}$
$\cot \theta=\frac{\cos \theta}{\sin \theta}$

SOH CAH TOA

$$
\begin{aligned}
& \text { SOH } \sin \theta=\frac{\text { opposite }}{\text { hypotenuse }} \\
& \text { CAH } \cos \theta=\frac{\text { adjacent }}{\text { hypotenuse }} \\
& \text { TOA } \tan \theta=\frac{\text { opposite }}{\text { adjacent }}
\end{aligned}
$$

This is used to find exact cosines, tangents, or sines of angles.

Exponential ang Logarithmic

Exponential $=b^{x}$
Logarithmic $=\ln x$

The Unit Circle

Double Angle Identities

$$
\begin{aligned}
& \sin (2 a)=2 \sin (a) \cos (a) \\
& \cos (2 a)=\cos ^{2}(a)-\sin ^{2}(a) \\
& \cos (2 a)=2 \cos ^{2}(a)-1 \\
& \cos (2 a)=1-2 \sin ^{2}(a) \\
& \tan (2 a)=\frac{2 \tan (a)}{1-\tan ^{2}(a)}
\end{aligned}
$$

Published 3rd June, 2015.

Last updated 3rd June, 2015.
Page 1 of 1 .

Product-Sum Identities

$$
\begin{aligned}
& \sin \alpha+\sin \beta=2 \sin \frac{\alpha+\beta}{2} \cos \frac{\alpha-\beta}{2} \\
& \sin \alpha-\sin \beta=2 \cos \frac{\alpha+\beta}{2} \sin \frac{\alpha-\beta}{2} \\
& \cos \alpha+\cos \beta=2 \cos \frac{\alpha+\beta}{2} \cos \frac{\alpha-\beta}{2} \\
& \cos \alpha-\cos \beta=-2 \sin \frac{\alpha+\beta}{2} \sin \frac{\alpha-\beta}{2}
\end{aligned}
$$

Half-Angle Identities

$$
\begin{aligned}
& \sin \left(\frac{a}{2}\right)= \pm \sqrt{\frac{(1-\cos a)}{2}} \\
& \cos \left(\frac{a}{2}\right)= \pm \sqrt{\frac{(1+\cos a)}{2}} \\
& \tan \left(\frac{a}{2}\right)=\frac{1-\cos a}{\sin a}=\frac{\sin a}{1+\cos a}
\end{aligned}
$$

Sum and Difference Identities

$$
\begin{aligned}
& \sin (\alpha+\beta)=\sin \alpha \cos \beta+\cos \alpha \sin \beta \\
& \sin (\alpha-\beta)=\sin \alpha \cos \beta-\cos \alpha \sin \beta \\
& \cos (\alpha+\beta)=\cos \alpha \cos \beta-\sin \alpha \sin \beta \\
& \cos (\alpha-\beta)=\cos \alpha \cos \beta+\sin \alpha \sin \beta \\
& \tan (\alpha+\beta)=\frac{\tan \alpha+\tan \beta}{1-\tan \alpha \tan \beta} \\
& \tan (\alpha-\beta)=\frac{\tan \alpha-\tan \beta}{1+\tan \alpha \tan \beta}
\end{aligned}
$$

Sponsored by CrosswordCheats.com
Learn to solve cryptic crosswords!
http://crosswordcheats.com

