Cheatography

The periodic table Cheat Sheet by resaraj via cheatography.com/209482/cs/45151/

The modern periodic table	
Alkaline (ns1)	lose 1 e⁻
	valence 1+→Noble gas configuration
Alkaline earth (ns)	lose 2 e⁻
	valence 2+→Noble gas configuration
Group 13(ns np)	light elements lose 3 e⁻
	heavy elements lose 3 e-
Group 15/ Nitrogen group (ns np)	gain 3 e⁻
	valence 3- (more important for light elements)
Group 16/ Oxygen group (ns np)	gain 2 e⁻
	valence 2-—Noble gas configuration
Group 17/ Halogens (ns np)	gain 1 e⁻
	valence 1-→Noble gas configuration

Atomic radii and ionic radii

In a group it increases with Z

Ionization energy	
realated with the metallic character: higher IE, easier to eject an e⁻, higher metallic character	IE depends on electron nucleus attraction
In a group it increases from bottom to top (from bigger to smaller radius))	In a period it increases from left to right (when Zeff increases)

In a period it decreases with Z

Quantity of energy a gaseous atom must absorb to be able to expel an electron

Magnetic properties

Diamag netic atom	all $\ensuremath{e}\xspace^{-}$ are paired and the individual magnetic effects cancel out
_	
Parama	has unpaired e ⁻ , the individual magnetic effects don't
gnetic	cancel out. These unpaired e⁻ posses a magnetic moment
atom	that causes the atom to be attracted to an external
	magnetic field

By resaraj

cheatography.com/resaraj/

Not published yet. Last updated 29th November, 2024. Page 1 of 1.

Sizes of atoms and ions

Atomis radius is hard to define,	Atomis radius depends on the
effective charge density is	size of the electron cloud: from
extended to infinity, but the	different shells it depends on
effective atomic radius is where	the value of n, for a given shell
there is a 95% of the electron	it depends on the Zeff
charge density	
Penetration:how close an electron	s e⁻>p e⁻>d e⁻ (in order of
gets to the nucelus	penetration ability)
Screening: how an outer e⁻ is	Zeff=Z-σ
blocked from the nuclear charge	
by inner e⁻	

Slatter rules

considered e⁻ in an *ns* or *np* orbital

•all e⁻ in ns and np orbitals with the same value of n contribute with σ=0,35 (for n=1, σ=0,30) •all e^- in orbitals with $n_i=n_{s,p}$ -1 contribute with $\sigma=0,85$

•all e⁻ in orbitals with $n_i=n_{s,p}-2$ or lower contribute with $\sigma=1$

considered e- in an nd or nf orbital

•all e⁻ in same nd and nf orbitals contribute with σ =0,35

•all the rest of e^- (n_i≤n_{d,f}) contribute with σ =0,35

Amount of nuclear charge felt by an e⁻ depends on its orbital and on the number of e- inbetween itself and the nucleus

Electron Affinity

Related with the non- metallic character	the larger EA abs. value, the easier it is to gain an electron, the less metallic the element id	
In a period, increases from left to right (as Zeff)	In a group, increases from bottom to top	
*large number of anomalies	B.,N,O,F	

Energy change that occurs when an atom in the gas phase gains an electron

Sponsored by CrosswordCheats.com Learn to solve cryptic crosswords! http://crosswordcheats.com