Cheatography

DEFINITION

lonic bonding occurs between a metal and a non metal ion with the electrostatic attraction between the ions. The electron will leave the low electronegative metal and move to the high electronegative non-metal.

Characteristics

electrons placed inside the atoms

strong electrostatic bonds

no directional preference

high melting and boiling points

soluble in polar solvents (water, alcohols, ...)

WHY?

BECAUSE OF LATTICE ENERGY

it is the enthalpy of formation of the ionic compound from gaseous ions, the measurement of the bonds' strength

Type of ionic interactions

electrostatic (main intercation)

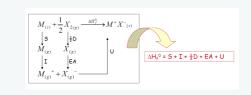
repulsive (between the electrons)

repulsive (between the nuclei)

Formulae

For a mole of solid:
$$E_{a} = -NA \frac{|q_{\perp}||q_{\perp}||e_{2}^{2}}{4\pi e_{a} d^{2}} \sum_{c=1}^{MADELUNG} CONSTANT$$

$$\diamond \text{ Depends on the relative position of the ions in the solid} \\ \diamond \text{ Is characteristic for each "structure"}$$


Formulae

```
U_{lattice} = \underbrace{E_{attractive}}_{E_a} + \underbrace{E_{repulsive}}_{E_r}
```

Born-Haber Cycle

Lattice energy cannot be easily obtained experimentally	Thus , we apply the Hess Law to realize indirect calculations
standard enthalpy of formation	ΔHf
enthalpy of sublimation	∆Hs=S
enthalpy of dissociation	∆Hd=D
ionization energy (take an electron)	ΔHi=I
electron affinity (add an electron)	ΔΗΕΑ=ΕΑ

Born-Haber Cycle

Ionic Liquids (IL)	
Salts in liquid state at room temperature made of ions	Possible when the ionic charges aren't too high and the distance is large enough
Useful properties	
-non volatile	-remain in liquid state up to 400°C
-non flammable	-good solvents for reactions
-reduced volume	-easy reuse

Born-Landé equation

 $U = -\frac{AN_{A}}{4\pi\varepsilon_{0}} \frac{|Z_{*}||Z_{-}|e^{2}}{d} (1 - \frac{1}{s})$

By resaraj

cheatography.com/resaraj/

Not published yet. Last updated 20th November, 2024. Page 2 of 2. Sponsored by Readable.com Measure your website readability! https://readable.com

Ionic Bond Cheat Sheet by resaraj via cheatography.com/209482/cs/45045/

Cheatography

Ionic Cond	ductors (Superconduc	tors)	Ionic
They are s	solid state ion	They conduct electricity due to	-whe
conductor	s used primarly in	the movementof the ions through	polar
solid oxide	e fuel cells.	the voids.	SOLU
An example would be yttria-stabilized zirconia (YSZ)		ΔHsc	
			Hsolv
Ionic Solids		MEL	
Physical behaviour		-high	
-HARD(- related with the attractive cohesion force in the ionic			
NESS)	structure. This prop	erty is related with the absolute value	-muc
	of the lattice energy	(dir4ectly to the charge of ions,	point

	inversely to their size)		
-RIGID	strog attractive forces hold ions in specific positions		
-	when enough dorce is applied, ions of similar charge are		
BRITTLE	brought next to eachother, and repulsions between them		
	crack the sample		
ELECTRIC CONDUCTIVITY			
-solid	insulators (the valence electrons aren't mobile and the		

onic Solids (cont)

-when dissolved in polar solvents	electricity conductor (ions are mobile)	
SOLUBILITY		
Δ Hsolution=-U+ Δ - Hsolvation	the higher the lattice energy of a salt, the less soluble it is	
MELTING AND BOILING POINTS		
-high melting point	freeing ions from their positions require large amount of energy	
-much higher boiling points	(the higher U is, the higher its boiling/m- elting point is)	

state

-when

molten

By **resaraj** cheatography.com/resaraj/

ions are in fixed positions))

electricity conductor (ions are mobile)

Not published yet. Last updated 20th November, 2024. Page 3 of 2. Sponsored by Readable.com Measure your website readability! https://readable.com