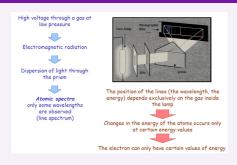


Electrons in atoms Cheat Sheet

by resaraj via cheatography.com/209482/cs/45129/

Elements and compounds

Isotopes of Hydrogen


1¹H→Deuterium (²1H)→Tritium (³1H)

Mol: amount of substance SI

Na=6,022*10²³entities/mol

mass of 1 mol of substance=its atomic mass (uma), taken as grams

Atomic spectra

Rydberg relation

only a limited number of energy values are available to excited gaseous atoms

The Bohr Atom

First postulate

atom= nucleus(positivecharge and miuch of the Fe=Fc \longrightarrow r= system mass) +e $^-$ moving in circular orbits around (Ze 2)/(4 π ε $_0$ m $_0$ 2) it

Second postulate

The e⁻ has only a fixed set of stationary states, as long as it remains in the same orbit, its energy is constant and no energy is emitted

Third postulate

An e⁻can pass only from one allowed orbit to another emitting or absorvig quanta(fixed discrete quantities of energy)

Heisenberg's uncertainty principle

 $\Delta x \Delta p \ge \frac{h}{4\pi}$

De Broglie's wave-particle duality

 $\lambda = \frac{1}{n}$

Particle in a box

Law of conservation of mass

Matter cannot be created nor mass reactants=mass destroyed products

Law of definite proportions

A chemical compound always contains exactly the same proportion of elements by mass

The modern atom

	Electric Charge		Mass	
	SI (C)	Atomic	SI (g)	Atomic (u) ^a
Proton	$+1.6022 \times 10^{-19}$	+1	1.6726×10^{-24}	1.0073
Neutron	0	0	1.6749×10^{-24}	1.0087
Electron	-1.6022×10^{-19}	-1	9.1094×10^{-28}	0.00054858

Atomic Number=Z=protons

Mass number=A=protons+neutrons

By **resaraj** cheatography.com/resaraj/

Not published yet. Last updated 28th November, 2024. Page 1 of 2. Sponsored by **CrosswordCheats.com** Learn to solve cryptic crosswords! http://crosswordcheats.com

Electrons in atoms Cheat Sheet

by resaraj via cheatography.com/209482/cs/45129/

Electromagnetic spectrum				
c=λ* <i>v</i>				
γ rays	[10 ⁻¹⁵ ,10 ⁻¹¹]m			
X rays	[10 ⁻¹³ ,10 ⁻⁹]m			
U.V.	[10 ⁻⁹ ,390*10 ⁻⁶]m			
Visible	[390,760]nm			
Infrarred	[760*10 ⁻⁶ ,10 ⁻³]m			
Microwave	[10 ⁻³ ,10 ⁻¹]m			
Radio	[10 ⁻² ,10⁴]m			

Atomic spectrum of Hydrogen

the given values are for λ

Balmer experimentally found a frequency formula to define H spectral lines

 $v=3,2881 \, 10^{15} (1/2-1/n^2) \, s^{-1}$

The photoelectric effect

 $E_{\text{photon}} = h\bar{v} \rightarrow h\bar{v} = \frac{1}{2}(mv^2) + eV_0$

Einstein postulated that light is not a wave but a collection of discrete wave packets (photons)

The Zeeman effect

spectral lines are split in the the split was proportional to the presence of a magnetic fild applied magnetic field

Quantum number				
n (principal quantum number)	1,2,,n			
I (angular momentum number)	[0,,n-1]			
m (magnetic quantum number)	[-I,,I]			
s (spin number)	[-1/2,1/2]			

Pauli Exclusion Principle

In an atom two electrons cannot have the same quantum numbers

By **resaraj** cheatography.com/resaraj/

Not published yet. Last updated 28th November, 2024. Page 2 of 2. Sponsored by CrosswordCheats.com
Learn to solve cryptic crosswords!

http://crosswordcheats.com

Planck's formula

E = nh

the quantum energy is proportional to the frequency of the emitted radiation, the energy of a system changes in specific quanta. $h=6.626^*10^{-34}$

Orbitals

Description of the probability of finding the electron in the space high electronic charge density

Multielectron atoms

Different penetrating and shielding properties of the $$\operatorname{\textsc{Zeff=Z-}}$$ orbitals $$\sigma$$