\documentclass[10pt,a4paper]{article} % Packages \usepackage{fancyhdr} % For header and footer \usepackage{multicol} % Allows multicols in tables \usepackage{tabularx} % Intelligent column widths \usepackage{tabulary} % Used in header and footer \usepackage{hhline} % Border under tables \usepackage{graphicx} % For images \usepackage{xcolor} % For hex colours %\usepackage[utf8x]{inputenc} % For unicode character support \usepackage[T1]{fontenc} % Without this we get weird character replacements \usepackage{colortbl} % For coloured tables \usepackage{setspace} % For line height \usepackage{lastpage} % Needed for total page number \usepackage{seqsplit} % Splits long words. %\usepackage{opensans} % Can't make this work so far. Shame. Would be lovely. \usepackage[normalem]{ulem} % For underlining links % Most of the following are not required for the majority % of cheat sheets but are needed for some symbol support. \usepackage{amsmath} % Symbols \usepackage{MnSymbol} % Symbols \usepackage{wasysym} % Symbols %\usepackage[english,german,french,spanish,italian]{babel} % Languages % Document Info \author{rentasticco} \pdfinfo{ /Title (memory.pdf) /Creator (Cheatography) /Author (rentasticco) /Subject (Memory Cheat Sheet) } % Lengths and widths \addtolength{\textwidth}{6cm} \addtolength{\textheight}{-1cm} \addtolength{\hoffset}{-3cm} \addtolength{\voffset}{-2cm} \setlength{\tabcolsep}{0.2cm} % Space between columns \setlength{\headsep}{-12pt} % Reduce space between header and content \setlength{\headheight}{85pt} % If less, LaTeX automatically increases it \renewcommand{\footrulewidth}{0pt} % Remove footer line \renewcommand{\headrulewidth}{0pt} % Remove header line \renewcommand{\seqinsert}{\ifmmode\allowbreak\else\-\fi} % Hyphens in seqsplit % This two commands together give roughly % the right line height in the tables \renewcommand{\arraystretch}{1.3} \onehalfspacing % Commands \newcommand{\SetRowColor}[1]{\noalign{\gdef\RowColorName{#1}}\rowcolor{\RowColorName}} % Shortcut for row colour \newcommand{\mymulticolumn}[3]{\multicolumn{#1}{>{\columncolor{\RowColorName}}#2}{#3}} % For coloured multi-cols \newcolumntype{x}[1]{>{\raggedright}p{#1}} % New column types for ragged-right paragraph columns \newcommand{\tn}{\tabularnewline} % Required as custom column type in use % Font and Colours \definecolor{HeadBackground}{HTML}{333333} \definecolor{FootBackground}{HTML}{666666} \definecolor{TextColor}{HTML}{333333} \definecolor{DarkBackground}{HTML}{6E006A} \definecolor{LightBackground}{HTML}{F5EFF5} \renewcommand{\familydefault}{\sfdefault} \color{TextColor} % Header and Footer \pagestyle{fancy} \fancyhead{} % Set header to blank \fancyfoot{} % Set footer to blank \fancyhead[L]{ \noindent \begin{multicols}{3} \begin{tabulary}{5.8cm}{C} \SetRowColor{DarkBackground} \vspace{-7pt} {\parbox{\dimexpr\textwidth-2\fboxsep\relax}{\noindent \hspace*{-6pt}\includegraphics[width=5.8cm]{/web/www.cheatography.com/public/images/cheatography_logo.pdf}} } \end{tabulary} \columnbreak \begin{tabulary}{11cm}{L} \vspace{-2pt}\large{\bf{\textcolor{DarkBackground}{\textrm{Memory Cheat Sheet}}}} \\ \normalsize{by \textcolor{DarkBackground}{rentasticco} via \textcolor{DarkBackground}{\uline{cheatography.com/177906/cs/46137/}}} \end{tabulary} \end{multicols}} \fancyfoot[L]{ \footnotesize \noindent \begin{multicols}{3} \begin{tabulary}{5.8cm}{LL} \SetRowColor{FootBackground} \mymulticolumn{2}{p{5.377cm}}{\bf\textcolor{white}{Cheatographer}} \\ \vspace{-2pt}rentasticco \\ \uline{cheatography.com/rentasticco} \\ \end{tabulary} \vfill \columnbreak \begin{tabulary}{5.8cm}{L} \SetRowColor{FootBackground} \mymulticolumn{1}{p{5.377cm}}{\bf\textcolor{white}{Cheat Sheet}} \\ \vspace{-2pt}Not Yet Published.\\ Updated 17th April, 2025.\\ Page {\thepage} of \pageref{LastPage}. \end{tabulary} \vfill \columnbreak \begin{tabulary}{5.8cm}{L} \SetRowColor{FootBackground} \mymulticolumn{1}{p{5.377cm}}{\bf\textcolor{white}{Sponsor}} \\ \SetRowColor{white} \vspace{-5pt} %\includegraphics[width=48px,height=48px]{dave.jpeg} Measure your website readability!\\ www.readability-score.com \end{tabulary} \end{multicols}} \begin{document} \raggedright \raggedcolumns % Set font size to small. Switch to any value % from this page to resize cheat sheet text: % www.emerson.emory.edu/services/latex/latex_169.html \footnotesize % Small font. \begin{tabularx}{17.67cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{17.67cm}}{\bf\textcolor{white}{Sensory Memory}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{17.67cm}}{{\bf{Definition}}} \tn % Row Count 1 (+ 1) % Row 1 \SetRowColor{white} \mymulticolumn{1}{x{17.67cm}}{Sensory memory is the shortest type of memory in the human memory system. It holds sensory information (sights, sounds, smells, etc.) for a very brief period — typically less than a second to a few seconds — long enough for it to be processed further or dismissed.} \tn % Row Count 7 (+ 6) % Row 2 \SetRowColor{LightBackground} \mymulticolumn{1}{x{17.67cm}}{{\bf{Key Characteristics of Sensory Memory}}} \tn % Row Count 8 (+ 1) % Row 3 \SetRowColor{white} \mymulticolumn{1}{x{17.67cm}}{Duration: Extremely brief (milliseconds to a few seconds).} \tn % Row Count 10 (+ 2) % Row 4 \SetRowColor{LightBackground} \mymulticolumn{1}{x{17.67cm}}{Capacity: Very high, but not consciously accessible.} \tn % Row Count 12 (+ 2) % Row 5 \SetRowColor{white} \mymulticolumn{1}{x{17.67cm}}{Function: Acts as a buffer for stimuli received through the five senses.} \tn % Row Count 14 (+ 2) % Row 6 \SetRowColor{LightBackground} \mymulticolumn{1}{x{17.67cm}}{Attention-Dependent Transfer: Information must be attended to in order to move to short-term memory.} \tn % Row Count 16 (+ 2) % Row 7 \SetRowColor{white} \mymulticolumn{1}{x{17.67cm}}{📂 {\bf{Types of Sensory Memory}}} \tn % Row Count 17 (+ 1) % Row 8 \SetRowColor{LightBackground} \mymulticolumn{1}{x{17.67cm}}{1. 🖼 Iconic Memory (Visual Sensory Memory)} \tn % Row Count 18 (+ 1) % Row 9 \SetRowColor{white} \mymulticolumn{1}{x{17.67cm}}{Modality: Visual} \tn % Row Count 19 (+ 1) % Row 10 \SetRowColor{LightBackground} \mymulticolumn{1}{x{17.67cm}}{Duration: \textasciitilde{}250 milliseconds} \tn % Row Count 20 (+ 1) % Row 11 \SetRowColor{white} \mymulticolumn{1}{x{17.67cm}}{Capacity: Very large} \tn % Row Count 21 (+ 1) % Row 12 \SetRowColor{LightBackground} \mymulticolumn{1}{x{17.67cm}}{Discovered by: George Sperling (1960)} \tn % Row Count 22 (+ 1) % Row 13 \SetRowColor{white} \mymulticolumn{1}{x{17.67cm}}{Experiment: Partial-report technique showed people could see more items than they could report due to rapid fading of memory.} \tn % Row Count 25 (+ 3) % Row 14 \SetRowColor{LightBackground} \mymulticolumn{1}{x{17.67cm}}{Role: Allows continuity in visual experience (e.g., watching a movie frame-by-frame).} \tn % Row Count 27 (+ 2) % Row 15 \SetRowColor{white} \mymulticolumn{1}{x{17.67cm}}{2. 🔊 Echoic Memory (Auditory Sensory Memory)} \tn % Row Count 28 (+ 1) % Row 16 \SetRowColor{LightBackground} \mymulticolumn{1}{x{17.67cm}}{Modality: Auditory} \tn % Row Count 29 (+ 1) % Row 17 \SetRowColor{white} \mymulticolumn{1}{x{17.67cm}}{Duration: \textasciitilde{}3–4 seconds} \tn % Row Count 30 (+ 1) \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{17.67cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{17.67cm}}{\bf\textcolor{white}{Sensory Memory (cont)}} \tn % Row 18 \SetRowColor{LightBackground} \mymulticolumn{1}{x{17.67cm}}{Capacity: More limited than iconic, but longer duration} \tn % Row Count 2 (+ 2) % Row 19 \SetRowColor{white} \mymulticolumn{1}{x{17.67cm}}{Key researcher: Darwin, Turvey, and Crowder (1972)} \tn % Row Count 3 (+ 1) % Row 20 \SetRowColor{LightBackground} \mymulticolumn{1}{x{17.67cm}}{Function: Enables understanding of spoken language (e.g., processing a full sentence even after a delay).} \tn % Row Count 6 (+ 3) % Row 21 \SetRowColor{white} \mymulticolumn{1}{x{17.67cm}}{3. 👃 Haptic Memory (Tactile Sensory Memory)} \tn % Row Count 7 (+ 1) % Row 22 \SetRowColor{LightBackground} \mymulticolumn{1}{x{17.67cm}}{Modality: Touch} \tn % Row Count 8 (+ 1) % Row 23 \SetRowColor{white} \mymulticolumn{1}{x{17.67cm}}{Duration: \textasciitilde{}1–2 seconds} \tn % Row Count 9 (+ 1) % Row 24 \SetRowColor{LightBackground} \mymulticolumn{1}{x{17.67cm}}{Still under-researched, but studies show it plays a role in spatial perception and motor planning.} \tn % Row Count 11 (+ 2) % Row 25 \SetRowColor{white} \mymulticolumn{1}{x{17.67cm}}{4. 👅 Gustatory Memory (Taste) and 👃 Olfactory Memory (Smell)} \tn % Row Count 13 (+ 2) % Row 26 \SetRowColor{LightBackground} \mymulticolumn{1}{x{17.67cm}}{Less well understood} \tn % Row Count 14 (+ 1) % Row 27 \SetRowColor{white} \mymulticolumn{1}{x{17.67cm}}{Potentially longer lasting than visual and auditory sensory memory} \tn % Row Count 16 (+ 2) % Row 28 \SetRowColor{LightBackground} \mymulticolumn{1}{x{17.67cm}}{Important in emotional memory and recognition} \tn % Row Count 17 (+ 1) % Row 29 \SetRowColor{white} \mymulticolumn{1}{x{17.67cm}}{{\bf{🧩 Key Concepts Related to Sensory Memory}}} \tn % Row Count 18 (+ 1) % Row 30 \SetRowColor{LightBackground} \mymulticolumn{1}{x{17.67cm}}{✅ Pre-Attentive Processing} \tn % Row Count 19 (+ 1) % Row 31 \SetRowColor{white} \mymulticolumn{1}{x{17.67cm}}{Occurs in sensory memory} \tn % Row Count 20 (+ 1) % Row 32 \SetRowColor{LightBackground} \mymulticolumn{1}{x{17.67cm}}{Allows for basic analysis (e.g., shape, pitch, color) before attention is directed.} \tn % Row Count 22 (+ 2) % Row 33 \SetRowColor{white} \mymulticolumn{1}{x{17.67cm}}{✅ Masking} \tn % Row Count 23 (+ 1) % Row 34 \SetRowColor{LightBackground} \mymulticolumn{1}{x{17.67cm}}{Refers to interference with sensory memory} \tn % Row Count 24 (+ 1) % Row 35 \SetRowColor{white} \mymulticolumn{1}{x{17.67cm}}{Backward masking in iconic memory — when a visual stimulus interferes with another shortly after.} \tn % Row Count 26 (+ 2) % Row 36 \SetRowColor{LightBackground} \mymulticolumn{1}{x{17.67cm}}{✅ Modality Effect} \tn % Row Count 27 (+ 1) % Row 37 \SetRowColor{white} \mymulticolumn{1}{x{17.67cm}}{The superior recall of the last items in a list when presented auditorily vs. visually} \tn % Row Count 29 (+ 2) % Row 38 \SetRowColor{LightBackground} \mymulticolumn{1}{x{17.67cm}}{Evidence for longer duration of echoic memory} \tn % Row Count 30 (+ 1) \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{17.67cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{17.67cm}}{\bf\textcolor{white}{Sensory Memory (cont)}} \tn % Row 39 \SetRowColor{LightBackground} \mymulticolumn{1}{x{17.67cm}}{✅ Change Blindness \& Inattentional Blindness} \tn % Row Count 1 (+ 1) % Row 40 \SetRowColor{white} \mymulticolumn{1}{x{17.67cm}}{Related phenomena showing limits of attention} \tn % Row Count 2 (+ 1) % Row 41 \SetRowColor{LightBackground} \mymulticolumn{1}{x{17.67cm}}{Despite availability in sensory memory, unattended stimuli can go unprocessed.} \tn % Row Count 4 (+ 2) % Row 42 \SetRowColor{white} \mymulticolumn{1}{x{17.67cm}}{✅ Temporal Integration} \tn % Row Count 5 (+ 1) % Row 43 \SetRowColor{LightBackground} \mymulticolumn{1}{x{17.67cm}}{Ability to combine sensory input across time (especially in auditory memory)} \tn % Row Count 7 (+ 2) % Row 44 \SetRowColor{white} \mymulticolumn{1}{x{17.67cm}}{Helps in recognizing words or phrases from sounds} \tn % Row Count 8 (+ 1) % Row 45 \SetRowColor{LightBackground} \mymulticolumn{1}{x{17.67cm}}{{\bf{🧠 Sensory Memory in Cognitive Psychology}}} \tn % Row Count 9 (+ 1) % Row 46 \SetRowColor{white} \mymulticolumn{1}{x{17.67cm}}{Buffer Function: Sensory memory acts as a temporary holding zone for raw data, allowing selective attention to process what's relevant.} \tn % Row Count 12 (+ 3) % Row 47 \SetRowColor{LightBackground} \mymulticolumn{1}{x{17.67cm}}{Temporal Resolution: Sensory memory allows rapid processing of rapidly changing stimuli, helping the system detect motion, changes, or transitions.} \tn % Row Count 15 (+ 3) % Row 48 \SetRowColor{white} \mymulticolumn{1}{x{17.67cm}}{Interface for Perception and Attention: It's a precursor to perceptual processing, influencing what information reaches short-term and long-term memory.} \tn % Row Count 19 (+ 4) % Row 49 \SetRowColor{LightBackground} \mymulticolumn{1}{x{17.67cm}}{Iconic and Echoic Memory in Cognition:} \tn % Row Count 20 (+ 1) % Row 50 \SetRowColor{white} \mymulticolumn{1}{x{17.67cm}}{Iconic memory supports visual search and scene continuity.} \tn % Row Count 22 (+ 2) % Row 51 \SetRowColor{LightBackground} \mymulticolumn{1}{x{17.67cm}}{Echoic memory is essential for language processing and auditory scene analysis (e.g., distinguishing a voice in a noisy room).} \tn % Row Count 25 (+ 3) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{17.67cm}{x{3.0366 cm} x{6.9167 cm} x{6.9167 cm} } \SetRowColor{DarkBackground} \mymulticolumn{3}{x{17.67cm}}{\bf\textcolor{white}{Key Brain Areas for Sensory Memory}} \tn % Row 0 \SetRowColor{LightBackground} \seqsplit{Sensory} Type & Brain Area & Description \tn % Row Count 2 (+ 2) % Row 1 \SetRowColor{white} Iconic \seqsplit{(Visual)} & Primary Visual Cortex (V1), extrastriate areas & Responsible for brief visual traces; neural activity can persist briefly even after stimulus offset. \tn % Row Count 9 (+ 7) % Row 2 \SetRowColor{LightBackground} Echoic \seqsplit{(Auditory)} & Primary Auditory Cortex (A1), superior temporal gyrus & Stores auditory traces; important for speech recognition and attention to sounds. \tn % Row Count 15 (+ 6) % Row 3 \SetRowColor{white} Haptic \seqsplit{(Touch)} & Somatosensory Cortex & Encodes short-term tactile information for spatial mapping and feedback. \tn % Row Count 20 (+ 5) \hhline{>{\arrayrulecolor{DarkBackground}}---} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{17.67cm}{x{4.1175 cm} x{4.1175 cm} x{4.1175 cm} x{4.1175 cm} } \SetRowColor{DarkBackground} \mymulticolumn{4}{x{17.67cm}}{\bf\textcolor{white}{Important Experiments on Sensory Memory}} \tn % Row 0 \SetRowColor{LightBackground} \seqsplit{Researcher(s)} & Aim & Procedure & \seqsplit{Findings/Conclusions} \tn % Row Count 2 (+ 2) % Row 1 \SetRowColor{white} George Sperling (1960) & To test the capacity and duration of iconic memory & \seqsplit{Participants} were shown a 3×4 grid of letters for 50 ms. In the whole report condition, they were asked to recall all letters. In the partial report condition, they were cued (e.g., with a tone) to recall a specific row \seqsplit{immediately} after display. & \seqsplit{Participants} could recall only \textasciitilde{}4 letters in the whole report, but nearly all letters from the cued row in the partial report. This suggested iconic memory has large capacity but brief duration (\textasciitilde{}250–500 ms). \tn % Row Count 27 (+ 25) % Row 2 \SetRowColor{LightBackground} Darwin, Turvey, \& Crowder (1972) & To examine the \seqsplit{characteristics} of echoic memory \seqsplit{(auditory)} & Used a \seqsplit{three-eared} man setup: presented 3 streams of spoken letters \seqsplit{simultaneously} from different spatial locations (left, right, center), each with a pitch cue. After \seqsplit{presentation}, a tone cued \seqsplit{participants} to recall from one stream. & \seqsplit{Performance} in the partial report condition was better than in whole report, similar to \seqsplit{Sperling's} findings, but the auditory trace lasted 2–4 seconds, \seqsplit{indicating} longer echoic memory than iconic. \tn % Row Count 51 (+ 24) \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{17.67cm}{x{4.1175 cm} x{4.1175 cm} x{4.1175 cm} x{4.1175 cm} } \SetRowColor{DarkBackground} \mymulticolumn{4}{x{17.67cm}}{\bf\textcolor{white}{Important Experiments on Sensory Memory (cont)}} \tn % Row 3 \SetRowColor{LightBackground} Crowder \& Morton (1969) – The \seqsplit{"Precategorical} Acoustic Store" (PAS) & To test whether echoic memory stores physical (sensory) \seqsplit{characteristics} rather than meaning & \seqsplit{Participants} heard lists of spoken digits and were asked to recall them. The recency effect was stronger when digits were spoken vs. read silently. & Echoic memory is \seqsplit{precategorical} and stores acoustic \seqsplit{properties}. Stronger recency for auditory lists supported the existence of a \seqsplit{short-lived} auditory store. \tn % Row Count 16 (+ 16) % Row 4 \SetRowColor{white} Neisser (1967) & To \seqsplit{conceptualize} sensory memory, \seqsplit{especially} iconic memory & Theorized based on earlier \seqsplit{experiments}, including \seqsplit{Sperling's} & Coined the term "iconic memory" and described it as a brief, visual sensory store that decays quickly and is separate from visual \seqsplit{short-term} memory. \tn % Row Count 31 (+ 15) \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{17.67cm}{x{4.1175 cm} x{4.1175 cm} x{4.1175 cm} x{4.1175 cm} } \SetRowColor{DarkBackground} \mymulticolumn{4}{x{17.67cm}}{\bf\textcolor{white}{Important Experiments on Sensory Memory (cont)}} \tn % Row 5 \SetRowColor{LightBackground} Averbach \& Coriell (1961) & To further \seqsplit{investigate} visual \seqsplit{persistence} and \seqsplit{interference} in iconic memory & Presented arrays of letters and used a visual cue (a bar or circle) instead of a tone to indicate which letter to report. Cues were shown at different time \seqsplit{intervals.} & \seqsplit{Performance} dropped when a circle was used, due to masking effects. Showed that \seqsplit{interference} can disrupt iconic memory before decay alone. \tn % Row Count 17 (+ 17) % Row 6 \SetRowColor{white} Phillips (1974) & To test the role of visual \seqsplit{complexity} and matching in iconic memory & Presented \seqsplit{participants} with complex visual patterns, followed by either the same or a different pattern after a brief delay. \seqsplit{Participants} had to say whether they matched. & Accuracy dropped rapidly after \textasciitilde{}300 ms, \seqsplit{supporting} the idea of a \seqsplit{short-lived} \seqsplit{high-fidelity} visual store. \tn % Row Count 34 (+ 17) \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{17.67cm}{x{4.1175 cm} x{4.1175 cm} x{4.1175 cm} x{4.1175 cm} } \SetRowColor{DarkBackground} \mymulticolumn{4}{x{17.67cm}}{\bf\textcolor{white}{Important Experiments on Sensory Memory (cont)}} \tn % Row 7 \SetRowColor{LightBackground} Treisman (1964) – \seqsplit{Attenuation} theory & To \seqsplit{investigate} whether \seqsplit{unattended} \seqsplit{information} is \seqsplit{completely} lost in auditory sensory memory & Used a dichotic listening task where a \seqsplit{meaningful} message switched from one ear to the other \seqsplit{midstream.} \seqsplit{Participants} were told to attend to only one ear. & Many \seqsplit{participants} followed the message to the other ear, \seqsplit{suggesting} that \seqsplit{unattended} auditory \seqsplit{information} is not entirely filtered out — it is \seqsplit{attenuated}, not erased. \tn % Row Count 17 (+ 17) % Row 8 \SetRowColor{white} Sams et al. (1993) & To measure the duration of auditory sensory memory with \seqsplit{neurophysiological} methods & Used MEG \seqsplit{(magnetoencephalography)} to detect MMN (Mismatch \seqsplit{Negativity)} responses to deviant auditory stimuli after different time delays. & MMN was observed up to 10 seconds after standard tone \seqsplit{presentation}. Showed that echoic memory traces can persist \seqsplit{neurologically} longer than \seqsplit{previously} thought. \tn % Row Count 33 (+ 16) \hhline{>{\arrayrulecolor{DarkBackground}}----} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{17.67cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{17.67cm}}{\bf\textcolor{white}{Short Term Memory}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{17.67cm}}{Short-Term Memory (STM): A limited-capacity system that temporarily holds information for brief periods (about 15–30 seconds) without rehearsal.} \tn % Row Count 3 (+ 3) % Row 1 \SetRowColor{white} \mymulticolumn{1}{x{17.67cm}}{Capacity: Classically believed to be 7 ± 2 items (Miller, 1956), though later research suggests it may be closer to 4–5 items.} \tn % Row Count 6 (+ 3) % Row 2 \SetRowColor{LightBackground} \mymulticolumn{1}{x{17.67cm}}{Duration: Typically 15–30 seconds without rehearsal.} \tn % Row Count 8 (+ 2) % Row 3 \SetRowColor{white} \mymulticolumn{1}{x{17.67cm}}{Encoding: Primarily acoustic/phonological, though some visual and semantic encoding can occur.} \tn % Row Count 10 (+ 2) % Row 4 \SetRowColor{LightBackground} \mymulticolumn{1}{x{17.67cm}}{Forgetting: Occurs due to decay (time-based loss) and interference (mainly proactive and retroactive).} \tn % Row Count 13 (+ 3) % Row 5 \SetRowColor{white} \mymulticolumn{1}{x{17.67cm}}{Rehearsal: Repetition that helps maintain items in STM and facilitates transfer to Long-Term Memory (LTM).} \tn % Row Count 16 (+ 3) % Row 6 \SetRowColor{LightBackground} \mymulticolumn{1}{x{17.67cm}}{{\bf{🧠 Characteristics of Short-Term Memory (STM)}}} \tn % Row Count 18 (+ 2) % Row 7 \SetRowColor{white} \mymulticolumn{1}{x{17.67cm}}{1. Limited Capacity} \tn % Row Count 19 (+ 1) % Row 8 \SetRowColor{LightBackground} \mymulticolumn{1}{x{17.67cm}}{STM can hold about 7 ± 2 items (Miller, 1956).} \tn % Row Count 20 (+ 1) % Row 9 \SetRowColor{white} \mymulticolumn{1}{x{17.67cm}}{Later research (e.g., Cowan, 2001) suggests the true capacity may be closer to 4–5 items.} \tn % Row Count 22 (+ 2) % Row 10 \SetRowColor{LightBackground} \mymulticolumn{1}{x{17.67cm}}{Chunking (grouping items into meaningful units) can increase capacity.} \tn % Row Count 24 (+ 2) % Row 11 \SetRowColor{white} \mymulticolumn{1}{x{17.67cm}}{2. Short Duration} \tn % Row Count 25 (+ 1) % Row 12 \SetRowColor{LightBackground} \mymulticolumn{1}{x{17.67cm}}{Without rehearsal, STM retains information for only 15–30 seconds.} \tn % Row Count 27 (+ 2) % Row 13 \SetRowColor{white} \mymulticolumn{1}{x{17.67cm}}{After that, information decays or is replaced.} \tn % Row Count 28 (+ 1) % Row 14 \SetRowColor{LightBackground} \mymulticolumn{1}{x{17.67cm}}{3. Acoustic Encoding (Primarily)} \tn % Row Count 29 (+ 1) % Row 15 \SetRowColor{white} \mymulticolumn{1}{x{17.67cm}}{STM encodes information mostly by sound, even if it's seen (e.g., letters visually shown may be remembered by their sound).} \tn % Row Count 32 (+ 3) \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{17.67cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{17.67cm}}{\bf\textcolor{white}{Short Term Memory (cont)}} \tn % Row 16 \SetRowColor{LightBackground} \mymulticolumn{1}{x{17.67cm}}{Evidence: Conrad (1964) found people confuse acoustically similar letters (e.g., B, D, P) more than visually similar ones.} \tn % Row Count 3 (+ 3) % Row 17 \SetRowColor{white} \mymulticolumn{1}{x{17.67cm}}{4. Vulnerability to Interference} \tn % Row Count 4 (+ 1) % Row 18 \SetRowColor{LightBackground} \mymulticolumn{1}{x{17.67cm}}{STM is very sensitive to both proactive and retroactive interference.} \tn % Row Count 6 (+ 2) % Row 19 \SetRowColor{white} \mymulticolumn{1}{x{17.67cm}}{New info can displace old info (Waugh \& Norman, 1965).} \tn % Row Count 8 (+ 2) % Row 20 \SetRowColor{LightBackground} \mymulticolumn{1}{x{17.67cm}}{Rehearsal Maintains Information} \tn % Row Count 9 (+ 1) % Row 21 \SetRowColor{white} \mymulticolumn{1}{x{17.67cm}}{Maintenance rehearsal helps retain info in STM.} \tn % Row Count 10 (+ 1) % Row 22 \SetRowColor{LightBackground} \mymulticolumn{1}{x{17.67cm}}{Without rehearsal, information is quickly forgotten (Peterson \& Peterson, 1959).} \tn % Row Count 12 (+ 2) % Row 23 \SetRowColor{white} \mymulticolumn{1}{x{17.67cm}}{Serial Position Effect} \tn % Row Count 13 (+ 1) % Row 24 \SetRowColor{LightBackground} \mymulticolumn{1}{x{17.67cm}}{STM contributes to the recency effect (better recall of last items in a list).} \tn % Row Count 15 (+ 2) % Row 25 \SetRowColor{white} \mymulticolumn{1}{x{17.67cm}}{Shows the importance of temporal context in recall.} \tn % Row Count 17 (+ 2) % Row 26 \SetRowColor{LightBackground} \mymulticolumn{1}{x{17.67cm}}{7. Information Transfer to LTM} \tn % Row Count 18 (+ 1) % Row 27 \SetRowColor{white} \mymulticolumn{1}{x{17.67cm}}{Rehearsal, especially elaborative rehearsal, helps encode information into Long-Term Memory.} \tn % Row Count 20 (+ 2) % Row 28 \SetRowColor{LightBackground} \mymulticolumn{1}{x{17.67cm}}{STM acts as a gateway to LTM in many memory models.} \tn % Row Count 22 (+ 2) % Row 29 \SetRowColor{white} \mymulticolumn{1}{x{17.67cm}}{8. Conscious Awareness} \tn % Row Count 23 (+ 1) % Row 30 \SetRowColor{LightBackground} \mymulticolumn{1}{x{17.67cm}}{STM (or working memory) holds information we are consciously aware of and currently thinking about.} \tn % Row Count 25 (+ 2) % Row 31 \SetRowColor{white} \mymulticolumn{1}{x{17.67cm}}{Used for active processing, decision-making, and problem-solving.} \tn % Row Count 27 (+ 2) % Row 32 \SetRowColor{LightBackground} \mymulticolumn{1}{x{17.67cm}}{9. Active vs Passive Debate} \tn % Row Count 28 (+ 1) % Row 33 \SetRowColor{white} \mymulticolumn{1}{x{17.67cm}}{Classical view: STM is a passive storage system (e.g., Atkinson-Shiffrin model).} \tn % Row Count 30 (+ 2) \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{17.67cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{17.67cm}}{\bf\textcolor{white}{Short Term Memory (cont)}} \tn % Row 34 \SetRowColor{LightBackground} \mymulticolumn{1}{x{17.67cm}}{Modern view: STM is part of Working Memory, an active system involving manipulation (Baddeley \& Hitch, 1974).} \tn % Row Count 3 (+ 3) % Row 35 \SetRowColor{white} \mymulticolumn{1}{x{17.67cm}}{10. Brain Basis} \tn % Row Count 4 (+ 1) % Row 36 \SetRowColor{LightBackground} \mymulticolumn{1}{x{17.67cm}}{Associated mainly with the prefrontal cortex, especially for manipulation and attention.} \tn % Row Count 6 (+ 2) % Row 37 \SetRowColor{white} \mymulticolumn{1}{x{17.67cm}}{Does not depend heavily on the hippocampus, unlike long-term memory.} \tn % Row Count 8 (+ 2) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{17.67cm}{x{8.8077 cm} x{8.4623 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{17.67cm}}{\bf\textcolor{white}{Short-Term vs Working Memory}} \tn % Row 0 \SetRowColor{LightBackground} STM & Working Memory \tn % Row Count 1 (+ 1) % Row 1 \SetRowColor{white} Temporary storage only & Storage + manipulation of info \tn % Row Count 3 (+ 2) % Row 2 \SetRowColor{LightBackground} Passive system & Active processing system \tn % Row Count 5 (+ 2) % Row 3 \SetRowColor{white} Associated with Atkinson-Shiffrin model & Associated with Baddeley \& Hitch model \tn % Row Count 7 (+ 2) \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{17.67cm}{x{6.3899 cm} x{10.8801 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{17.67cm}}{\bf\textcolor{white}{STM in Neuroscience}} \tn % Row 0 \SetRowColor{LightBackground} Aspect & Detail \tn % Row Count 1 (+ 1) % Row 1 \SetRowColor{white} Brain Regions & - Prefrontal Cortex (especially dorsolateral): Temporary maintenance and manipulation of information.\{\{nl\}\} - Hippocampus: Less directly involved in STM, more for LTM encoding. \{\{nl\}\} - Parietal Cortex: Linked to storage aspects. \tn % Row Count 11 (+ 10) % Row 2 \SetRowColor{LightBackground} Neural Basis & - Sustained firing of neurons in the prefrontal cortex represents active STM. \{\{nl\}\}- Functional connectivity between cortical and subcortical areas. \tn % Row Count 17 (+ 6) % Row 3 \SetRowColor{white} \seqsplit{Neurotransmitters} & - Dopamine and norepinephrine are critical for attention and working memory functions. \tn % Row Count 21 (+ 4) % Row 4 \SetRowColor{LightBackground} Neuroimaging Techniques & - fMRI and EEG used to examine load-dependent activation in STM tasks. \{\{nl\}\}- TMS studies show causal role of PFC in STM manipulation. \tn % Row Count 27 (+ 6) \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{17.67cm}{x{4.1175 cm} x{4.1175 cm} x{4.1175 cm} x{4.1175 cm} } \SetRowColor{DarkBackground} \mymulticolumn{4}{x{17.67cm}}{\bf\textcolor{white}{Key Experiments}} \tn % Row 0 \SetRowColor{LightBackground} \seqsplit{Researcher(s)} & Aim & Procedure & \seqsplit{Findings/Conclusions} \tn % Row Count 2 (+ 2) % Row 1 \SetRowColor{white} Peterson \& Peterson (1959) & To study the duration of STM & Presented \seqsplit{participants} with 3-letter trigrams (e.g., "KLP") and had them count backward by 3s to prevent \seqsplit{rehearsal.} & Recall dropped \seqsplit{drastically} after 18–20 seconds → STM has a brief duration. \tn % Row Count 14 (+ 12) % Row 2 \SetRowColor{LightBackground} Miller (1956) & To examine STM capacity & Review of memory tasks using digits, words, tones. & STM holds about 7 ± 2 items. \seqsplit{Introduced} the idea of chunking. \tn % Row Count 21 (+ 7) % Row 3 \SetRowColor{white} Baddeley (1966) & To \seqsplit{investigate} STM encoding & Presented lists of \seqsplit{acoustically} similar and \seqsplit{dissimilar} words for immediate recall. & STM primarily encodes \seqsplit{acoustically} – worse recall for \seqsplit{similar-sounding} words. \tn % Row Count 30 (+ 9) \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{17.67cm}{x{4.1175 cm} x{4.1175 cm} x{4.1175 cm} x{4.1175 cm} } \SetRowColor{DarkBackground} \mymulticolumn{4}{x{17.67cm}}{\bf\textcolor{white}{Key Experiments (cont)}} \tn % Row 4 \SetRowColor{LightBackground} Wickens et al. (1976) – Release from Proactive \seqsplit{Interference} & To show that STM can use semantic encoding & \seqsplit{Participants} \seqsplit{remembered} word lists from the same or different \seqsplit{categories}. & \seqsplit{Performance} improved when category changed → STM can encode \seqsplit{semantically} under certain \seqsplit{conditions}. \tn % Row Count 10 (+ 10) % Row 5 \SetRowColor{white} Conrad (1964) & To test encoding in STM & Presented letters visually and asked for recall. & Errors were more likely to be \seqsplit{acoustically} similar (e.g., "P" mistaken for "B") → acoustic coding \seqsplit{dominates.} \tn % Row Count 21 (+ 11) \hhline{>{\arrayrulecolor{DarkBackground}}----} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{17.67cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{17.67cm}}{\bf\textcolor{white}{Long Term Memory}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{17.67cm}}{Long-Term Memory (LTM) refers to the system responsible for storing information over extended periods—from minutes to a lifetime. It differs from STM in terms of capacity, duration, and encoding.} \tn % Row Count 4 (+ 4) % Row 1 \SetRowColor{white} \mymulticolumn{1}{x{17.67cm}}{🧠 Duration: Virtually unlimited (can last a lifetime)} \tn % Row Count 6 (+ 2) % Row 2 \SetRowColor{LightBackground} \mymulticolumn{1}{x{17.67cm}}{🧠 Capacity: Vast, possibly unlimited} \tn % Row Count 7 (+ 1) % Row 3 \SetRowColor{white} \mymulticolumn{1}{x{17.67cm}}{🧠 Encoding: Primarily semantic, but also includes visual, auditory, and olfactory encoding} \tn % Row Count 9 (+ 2) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{17.67cm}{x{4.2175 cm} x{6.2419 cm} x{6.4106 cm} } \SetRowColor{DarkBackground} \mymulticolumn{3}{x{17.67cm}}{\bf\textcolor{white}{Types of Long Term Memory}} \tn % Row 0 \SetRowColor{LightBackground} Category & Subtypes & Details \tn % Row Count 1 (+ 1) % Row 1 \SetRowColor{white} Explicit \seqsplit{(Declarative)} & - Episodic \{\{nl\}\} - Semantic & Episodic: Personal \seqsplit{experiences/events} (e.g., your last birthday)\{\{nl\}\} Semantic: \seqsplit{Factual/general} knowledge (e.g., Paris is the capital of France) \tn % Row Count 11 (+ 10) % Row 2 \SetRowColor{LightBackground} Implicit \seqsplit{(Non-Declarative)} & -Procedural\{\{nl\}\}- Priming \{\{nl\}\}- Conditioning & Procedural: How to do things (e.g., riding a bike) \{\{nl\}\}Priming: Earlier exposure influences later response \{\{nl\}\}Conditioning: Classical and operant responses stored over time \tn % Row Count 23 (+ 12) \hhline{>{\arrayrulecolor{DarkBackground}}---} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{17.67cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{17.67cm}}{\bf\textcolor{white}{LTM (more info)}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{17.67cm}}{1. Autobiographical Memory} \tn % Row Count 1 (+ 1) % Row 1 \SetRowColor{white} \mymulticolumn{1}{x{17.67cm}}{Mix of episodic and semantic memory. \{\{nl\}\} Refers to memories of personal life events. \{\{nl\}\} Related to self-concept and identity. \{\{nl\}\} Brain areas: medial prefrontal cortex, hippocampus, and amygdala.} \tn % Row Count 6 (+ 5) % Row 2 \SetRowColor{LightBackground} \mymulticolumn{1}{x{17.67cm}}{2. Flashbulb Memory} \tn % Row Count 7 (+ 1) % Row 3 \SetRowColor{white} \mymulticolumn{1}{x{17.67cm}}{Vivid, detailed memories of emotionally charged events (e.g., natural disasters, 9/11). \{\{nl\}\} Research by Brown \& Kulik (1977).\{\{nl\}\} Often high in confidence but not always accurate. \{\{nl\}\} Involves the amygdala and stress hormones (e.g., adrenaline).} \tn % Row Count 13 (+ 6) % Row 4 \SetRowColor{LightBackground} \mymulticolumn{1}{x{17.67cm}}{3. Prospective Memory} \tn % Row Count 14 (+ 1) % Row 5 \SetRowColor{white} \mymulticolumn{1}{x{17.67cm}}{Remembering to perform actions in the future (e.g., taking medication). \{\{nl\}\} Involves executive functioning and prefrontal cortex. \{\{nl\}\} Types: event-based (cue-triggered) and time-based.} \tn % Row Count 18 (+ 4) % Row 6 \SetRowColor{LightBackground} \mymulticolumn{1}{x{17.67cm}}{4. Schema Theory and Memory} \tn % Row Count 19 (+ 1) % Row 7 \SetRowColor{white} \mymulticolumn{1}{x{17.67cm}}{Schemas are mental frameworks that influence how we encode, store, and retrieve memories. \{\{nl\}\} Bartlett (1932): "War of the Ghosts" study—people reconstructed stories based on cultural expectations. \{\{nl\}\} Memory is reconstructive, not reproductive.} \tn % Row Count 25 (+ 6) % Row 8 \SetRowColor{LightBackground} \mymulticolumn{1}{x{17.67cm}}{5. Encoding Specificity Principle (Tulving \& Thomson, 1973)} \tn % Row Count 27 (+ 2) % Row 9 \SetRowColor{white} \mymulticolumn{1}{x{17.67cm}}{Context and state during encoding affect recall. \{\{nl\}\} If you learn something while sad, you're more likely to recall it while sad (state-dependent memory).} \tn % Row Count 31 (+ 4) \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{17.67cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{17.67cm}}{\bf\textcolor{white}{LTM (more info) (cont)}} \tn % Row 10 \SetRowColor{LightBackground} \mymulticolumn{1}{x{17.67cm}}{6. Memory Consolidation and Sleep} \tn % Row Count 1 (+ 1) % Row 11 \SetRowColor{white} \mymulticolumn{1}{x{17.67cm}}{Consolidation = stabilizing memory traces. \{\{nl\}\} Occurs during REM and slow-wave sleep. \{\{nl\}\} Hippocampus replays recent events to integrate them into cortex.} \tn % Row Count 5 (+ 4) % Row 12 \SetRowColor{LightBackground} \mymulticolumn{1}{x{17.67cm}}{7. Reconsolidation and Memory Modification} \tn % Row Count 6 (+ 1) % Row 13 \SetRowColor{white} \mymulticolumn{1}{x{17.67cm}}{Every time a memory is retrieved, it becomes temporarily unstable and open to modification or distortion. \{\{nl\}\} Important in therapy for PTSD, where traumatic memories can be safely altered.} \tn % Row Count 10 (+ 4) % Row 14 \SetRowColor{LightBackground} \mymulticolumn{1}{x{17.67cm}}{8. Dual-Process Theories of Recognition} \tn % Row Count 11 (+ 1) % Row 15 \SetRowColor{white} \mymulticolumn{1}{x{17.67cm}}{Recollection: Conscious retrieval of contextual details (episodic). \{\{nl\}\} Familiarity: Feeling of knowing without full details (semantic). \{\{nl\}\} Supported by studies using Remember/Know paradigms.} \tn % Row Count 15 (+ 4) % Row 16 \SetRowColor{LightBackground} \mymulticolumn{1}{x{17.67cm}}{9. Neurotransmitters Involved in LTM} \tn % Row Count 16 (+ 1) % Row 17 \SetRowColor{white} \mymulticolumn{1}{x{17.67cm}}{Glutamate: Key for LTP and synaptic plasticity \{\{nl\}\} Acetylcholine: Important in attention and memory encoding (especially in the hippocampus) \{\{nl\}\} Dopamine: Enhances memory via reward-based learning \{\{nl\}\} Cortisol: High levels impair memory, especially retrieval} \tn % Row Count 22 (+ 6) % Row 18 \SetRowColor{LightBackground} \mymulticolumn{1}{x{17.67cm}}{10. LTM Across the Lifespan} \tn % Row Count 23 (+ 1) % Row 19 \SetRowColor{white} \mymulticolumn{1}{x{17.67cm}}{Infantile amnesia: Lack of episodic memories from early childhood (before \textasciitilde{}3 years). \{\{nl\}\} Reminiscence bump: People recall more memories from ages 10–30, especially meaningful life events. \{\{nl\}\} Aging: Semantic memory often preserved; episodic memory and working memory decline.} \tn % Row Count 29 (+ 6) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{17.67cm}{x{5.181 cm} x{12.089 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{17.67cm}}{\bf\textcolor{white}{Neuroscience of LTM}} \tn % Row 0 \SetRowColor{LightBackground} Memory Type & Brain Area(s) Involved \tn % Row Count 1 (+ 1) % Row 1 \SetRowColor{white} Episodic Memory & Hippocampus, prefrontal cortex \tn % Row Count 3 (+ 2) % Row 2 \SetRowColor{LightBackground} Semantic Memory & Temporal lobe, inferior parietal lobe \tn % Row Count 5 (+ 2) % Row 3 \SetRowColor{white} Procedural Memory & Basal ganglia, cerebellum, motor cortex \tn % Row Count 7 (+ 2) % Row 4 \SetRowColor{LightBackground} Emotional Memory & Amygdala (especially fear conditioning) \tn % Row Count 9 (+ 2) \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{17.67cm}{x{3.6234 cm} x{3.4587 cm} x{4.7763 cm} x{4.6116 cm} } \SetRowColor{DarkBackground} \mymulticolumn{4}{x{17.67cm}}{\bf\textcolor{white}{Key Experiments (LTM)}} \tn % Row 0 \SetRowColor{LightBackground} \seqsplit{Researcher(s)} & Aim & Procedure & \seqsplit{Findings/Conclusions} \tn % Row Count 2 (+ 2) % Row 1 \SetRowColor{white} \seqsplit{Ebbinghaus} (1885) & Examine \seqsplit{forgetting} & Memorized nonsense syllables, tested recall over time & Introduced the Forgetting Curve and Spacing Effect \tn % Row Count 7 (+ 5) % Row 2 \SetRowColor{LightBackground} Craik \& Tulving (1975) & Study depth of \seqsplit{processing} & \seqsplit{Participants} processed words at shallow, \seqsplit{intermediate}, or deep levels & Deeper processing led to better recall \tn % Row Count 14 (+ 7) % Row 3 \SetRowColor{white} Tulving (1983) & Examine \seqsplit{episodic} \seqsplit{retrieval} & Used \seqsplit{neuroimaging} to study brain activation during memory tasks & Found different areas active for episodic vs. semantic memory \tn % Row Count 20 (+ 6) % Row 4 \SetRowColor{LightBackground} Godden \& \seqsplit{Baddeley} (1975) & \seqsplit{Context-dependent} memory & Scuba divers learned words on land or underwater and recalled them in \seqsplit{same/different} context & Recall was better in matching contexts \tn % Row Count 29 (+ 9) % Row 5 \SetRowColor{white} Milner (1966) – HM case study & \seqsplit{Understand} role of \seqsplit{hippocampus} & Studied patient HM who had \seqsplit{hippocampus} removed & Showed \seqsplit{hippocampus} crucial for forming new \seqsplit{declarative} memories, but procedural memory remained intact \tn % Row Count 39 (+ 10) \hhline{>{\arrayrulecolor{DarkBackground}}----} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{17.67cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{17.67cm}}{\bf\textcolor{white}{Atkinson-Shiffrin Model of Memory (1968)}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{17.67cm}}{The Atkinson-Shiffrin model, proposed in 1968, is one of the earliest and most influential models of memory. It describes memory as a linear process involving three separate stores:} \tn % Row Count 4 (+ 4) % Row 1 \SetRowColor{white} \mymulticolumn{1}{x{17.67cm}}{🔁 Sensory Register → Short-Term Memory → Long-Term Memory} \tn % Row Count 6 (+ 2) % Row 2 \SetRowColor{LightBackground} \mymulticolumn{1}{x{17.67cm}}{It emphasizes encoding, storage, and retrieval as the core processes of memory.} \tn % Row Count 8 (+ 2) % Row 3 \SetRowColor{white} \mymulticolumn{1}{x{17.67cm}}{{\bf{The Three Memory Stores}}} \tn % Row Count 9 (+ 1) % Row 4 \SetRowColor{LightBackground} \mymulticolumn{1}{x{17.67cm}}{Sensory Register \{\{nl\}\}\textless{}1–2 seconds \{\{nl\}\}Very large Raw/unprocessed (modality-specific: visual, auditory, etc.) \{\{nl\}\}Rapid decay} \tn % Row Count 12 (+ 3) % Row 5 \SetRowColor{white} \mymulticolumn{1}{x{17.67cm}}{Short-Term Memory (STM) \{\{nl\}\}\textasciitilde{}15–30 seconds\{\{nl\}\} 7 ± 2 items (Miller, 1956) Acoustic (mainly)\{\{nl\}\} Displacement \& decay} \tn % Row Count 15 (+ 3) % Row 6 \SetRowColor{LightBackground} \mymulticolumn{1}{x{17.67cm}}{Long-Term Memory (LTM) \{\{nl\}\}Potentially lifetime \{\{nl\}\}Unlimited \{\{nl\}\}Primarily semantic \{\{nl\}\}Retrieval failure, interference} \tn % Row Count 18 (+ 3) % Row 7 \SetRowColor{white} \mymulticolumn{1}{x{17.67cm}}{{\bf{Key Processes in the Model}}} \tn % Row Count 19 (+ 1) % Row 8 \SetRowColor{LightBackground} \mymulticolumn{1}{x{17.67cm}}{Attention\{\{nl\}\} Focusing on specific sensory input\{\{nl\}\} Moves info from sensory to STM} \tn % Row Count 21 (+ 2) % Row 9 \SetRowColor{white} \mymulticolumn{1}{x{17.67cm}}{Rehearsal \{\{nl\}\}Repeating information mentally or aloud \{\{nl\}\}Transfers info from STM to LTM} \tn % Row Count 23 (+ 2) % Row 10 \SetRowColor{LightBackground} \mymulticolumn{1}{x{17.67cm}}{Encoding\{\{nl\}\} Transforming input for storage\{\{nl\}\} STM: acoustic; LTM: semantic} \tn % Row Count 25 (+ 2) % Row 11 \SetRowColor{white} \mymulticolumn{1}{x{17.67cm}}{Retrieval\{\{nl\}\} Accessing stored information \{\{nl\}\}From LTM back to STM for use} \tn % Row Count 27 (+ 2) % Row 12 \SetRowColor{LightBackground} \mymulticolumn{1}{x{17.67cm}}{Forgetting\{\{nl\}\} Loss of stored info\{\{nl\}\} Each store has different causes (e.g., decay, interference)} \tn % Row Count 30 (+ 3) \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{17.67cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{17.67cm}}{\bf\textcolor{white}{Atkinson-Shiffrin Model of Memory (1968) (cont)}} \tn % Row 13 \SetRowColor{LightBackground} \mymulticolumn{1}{x{17.67cm}}{{\bf{Strengths of the Model}}} \tn % Row Count 1 (+ 1) % Row 14 \SetRowColor{white} \mymulticolumn{1}{x{17.67cm}}{✅ Clear structure—easy to test experimentally} \tn % Row Count 2 (+ 1) % Row 15 \SetRowColor{LightBackground} \mymulticolumn{1}{x{17.67cm}}{✅ First to distinguish memory types systematically} \tn % Row Count 4 (+ 2) % Row 16 \SetRowColor{white} \mymulticolumn{1}{x{17.67cm}}{✅ Explains serial position effect} \tn % Row Count 5 (+ 1) % Row 17 \SetRowColor{LightBackground} \mymulticolumn{1}{x{17.67cm}}{✅ Supported by neuropsychological evidence (e.g., patient HM)} \tn % Row Count 7 (+ 2) % Row 18 \SetRowColor{white} \mymulticolumn{1}{x{17.67cm}}{{\bf{Criticisms \& Limitations}}} \tn % Row Count 8 (+ 1) % Row 19 \SetRowColor{LightBackground} \mymulticolumn{1}{x{17.67cm}}{❌ Oversimplified – memory is not purely linear} \tn % Row Count 9 (+ 1) % Row 20 \SetRowColor{white} \mymulticolumn{1}{x{17.67cm}}{❌ Too focused on rehearsal – not the only route to LTM} \tn % Row Count 11 (+ 2) % Row 21 \SetRowColor{LightBackground} \mymulticolumn{1}{x{17.67cm}}{❌ Doesn't explain implicit memory or procedural learning} \tn % Row Count 13 (+ 2) % Row 22 \SetRowColor{white} \mymulticolumn{1}{x{17.67cm}}{❌ Lacks explanation of interaction between STM and LTM (e.g., chunking uses LTM knowledge in STM)} \tn % Row Count 15 (+ 2) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{17.67cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{17.67cm}}{\bf\textcolor{white}{Baddeley \& Hitch's Working Memory Model (1974)}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{17.67cm}}{1. Why It Was Proposed} \tn % Row Count 1 (+ 1) % Row 1 \SetRowColor{white} \mymulticolumn{1}{x{17.67cm}}{To replace the oversimplified Short-Term Memory (STM) store in Atkinson \& Shiffrin's model. \{\{nl\}\} Emphasized that memory is not a single passive store, but an active, multi-component system for holding and manipulating information.} \tn % Row Count 6 (+ 5) % Row 2 \SetRowColor{LightBackground} \mymulticolumn{1}{x{17.67cm}}{{\bf{Core Components of the Model}}} \tn % Row Count 7 (+ 1) % Row 3 \SetRowColor{white} \mymulticolumn{1}{x{17.67cm}}{a. Central Executive} \tn % Row Count 8 (+ 1) % Row 4 \SetRowColor{LightBackground} \mymulticolumn{1}{x{17.67cm}}{💡 Main control system \{\{nl\}\} Directs attention, allocates tasks to subsystems. \{\{nl\}\} Has limited capacity, doesn't store info itself. \{\{nl\}\} Involved in planning, problem-solving, decision-making.} \tn % Row Count 13 (+ 5) % Row 5 \SetRowColor{white} \mymulticolumn{1}{x{17.67cm}}{b. Phonological Loop} \tn % Row Count 14 (+ 1) % Row 6 \SetRowColor{LightBackground} \mymulticolumn{1}{x{17.67cm}}{Deals with verbal/auditory information. \{\{nl\}\} Two sub-parts: \{\{nl\}\} Phonological Store ("inner ear") – holds spoken words briefly. \{\{nl\}\} Articulatory Control Process ("inner voice") – allows rehearsal. \{\{nl\}\} Crucial for language processing and learning.} \tn % Row Count 20 (+ 6) % Row 7 \SetRowColor{white} \mymulticolumn{1}{x{17.67cm}}{c. Visuo-Spatial Sketchpad} \tn % Row Count 21 (+ 1) % Row 8 \SetRowColor{LightBackground} \mymulticolumn{1}{x{17.67cm}}{Handles visual and spatial information. \{\{nl\}\} Called the "inner eye". \{\{nl\}\} Involved in navigation, mental imagery, and visual memory. \{\{nl\}\} Later split into: \{\{nl\}\} Visual cache (stores form/color) \{\{nl\}\} Inner scribe (records spatial/movement info)} \tn % Row Count 27 (+ 6) % Row 9 \SetRowColor{white} \mymulticolumn{1}{x{17.67cm}}{d. Episodic Buffer (added in 2000)} \tn % Row Count 28 (+ 1) % Row 10 \SetRowColor{LightBackground} \mymulticolumn{1}{x{17.67cm}}{Integrates info from PL, VSS, and LTM into coherent episodes. \{\{nl\}\} Has limited capacity. \{\{nl\}\} Useful in working with integrated multi-modal information (e.g., stories).} \tn % Row Count 32 (+ 4) \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{17.67cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{17.67cm}}{\bf\textcolor{white}{Baddeley \& Hitch's Working Memory Model (1974) (cont)}} \tn % Row 11 \SetRowColor{LightBackground} \mymulticolumn{1}{x{17.67cm}}{Supporting Research \& Evidence} \tn % Row Count 1 (+ 1) % Row 12 \SetRowColor{white} \mymulticolumn{1}{x{17.67cm}}{🧠 Dual-Task Studies (Baddeley \& Hitch, 1974) Participants performed two tasks at once: \{\{nl\}\} One verbal (e.g., repeating numbers) \{\{nl\}\} One reasoning (e.g., true/false questions) \{\{nl\}\} Result: Could do both, but slower → suggests separate systems (not a single STM). \{\{nl\}\} 🧪 Word Length Effect (Baddeley et al., 1975) Short words are recalled better than long words. \{\{nl\}\} Supports idea of a time-limited phonological loop. \{\{nl\}\} 🎨 Logie (1995) Gave evidence for separate visual and spatial stores in the visuo-spatial sketchpad. \{\{nl\}\} 🧍‍♂️ KF Case Study (Shallice \& Warrington, 1970) Brain damage: poor verbal STM, good visual memory. \{\{nl\}\} Supports the existence of different STM components.} \tn % Row Count 16 (+ 15) % Row 13 \SetRowColor{LightBackground} \mymulticolumn{1}{x{17.67cm}}{{\bf{Strengths of the Model}}} \tn % Row Count 17 (+ 1) % Row 14 \SetRowColor{white} \mymulticolumn{1}{x{17.67cm}}{Explains multi-tasking. \{\{nl\}\} Evidence from brain imaging (e.g., different areas for verbal/visual tasks). \{\{nl\}\} More realistic than the MSM – reflects cognitive flexibility. \{\{nl\}\} Accounts for active processing (not just storage).} \tn % Row Count 22 (+ 5) % Row 15 \SetRowColor{LightBackground} \mymulticolumn{1}{x{17.67cm}}{{\bf{Weaknesses of the Model}}} \tn % Row Count 23 (+ 1) % Row 16 \SetRowColor{white} \mymulticolumn{1}{x{17.67cm}}{Central Executive is vague – lacks detailed explanation. \{\{nl\}\} Little is known about how subsystems interact. \{\{nl\}\} Mostly tested in lab settings – ecological validity? \{\{nl\}\} May underestimate the role of LTM in working memory tasks.} \tn % Row Count 28 (+ 5) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{17.67cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{17.67cm}}{\bf\textcolor{white}{Craik and Lockhart's Levels of Processing Model}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{17.67cm}}{{\bf{Overview and Key Concepts}}} \tn % Row Count 1 (+ 1) % Row 1 \SetRowColor{white} \mymulticolumn{1}{x{17.67cm}}{Craik and Lockhart challenged the multi-store model of memory. \{\{nl\}\} Proposed that memory is a by-product of the depth of processing, not of distinct stores. \{\{nl\}\} Emphasis is on how information is processed, not where it is stored. \{\{nl\}\} Deeper processing = better long-term retention. \{\{nl\}\} Memory durability depends on levels of analysis (not repetition alone). \{\{nl\}\}} \tn % Row Count 9 (+ 8) % Row 2 \SetRowColor{LightBackground} \mymulticolumn{1}{x{17.67cm}}{🔍 {\bf{Levels of Processing}}} \tn % Row Count 10 (+ 1) % Row 3 \SetRowColor{white} \mymulticolumn{1}{x{17.67cm}}{Shallow Processing \{\{nl\}\} Focuses on surface features (e.g., structure, sound). \{\{nl\}\} Includes: visual (what it looks like) and phonemic (how it sounds) encoding. \{\{nl\}\} Results in weak, short-lived memory traces. \{\{nl\}\} Intermediate Processing \{\{nl\}\} Involves some analysis, such as recognizing a word's sound or rhyme. \{\{nl\}\} Better than shallow, but still not optimal for long-term retention. \{\{nl\}\} Deep (Semantic) Processing \{\{nl\}\} Focuses on meaning, context, or relating new info to existing knowledge. \{\{nl\}\} Encourages elaboration, association, and comprehension. \{\{nl\}\} Produces stronger, more durable memory traces. \{\{nl\}\}} \tn % Row Count 23 (+ 13) % Row 4 \SetRowColor{LightBackground} \mymulticolumn{1}{x{17.67cm}}{{\bf{🧪 Supporting Experiments \{\{nl\}\}}}} \tn % Row Count 24 (+ 1) % Row 5 \SetRowColor{white} \mymulticolumn{1}{x{17.67cm}}{Craik \& Tulving (1975) \{\{nl\}\} Participants were asked questions about words requiring different depths of processing: \{\{nl\}\} Shallow (Is the word in capital letters?) \{\{nl\}\} Intermediate (Does it rhyme with 'cat'?) \{\{nl\}\} Deep (Does it fit in the sentence: "He met a \_\_\_ on the street"?) \{\{nl\}\} Findings: Words processed deeply were recalled more accurately. \{\{nl\}\} Conclusion: Depth of processing has a direct effect on memory. \{\{nl\}\}} \tn % Row Count 33 (+ 9) \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{17.67cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{17.67cm}}{\bf\textcolor{white}{Craik and Lockhart's Levels of Processing Model (cont)}} \tn % Row 6 \SetRowColor{LightBackground} \mymulticolumn{1}{x{17.67cm}}{✔️ {\bf{Strengths of the Model \{\{nl\}\}}}} \tn % Row Count 1 (+ 1) % Row 7 \SetRowColor{white} \mymulticolumn{1}{x{17.67cm}}{Explains why elaborative rehearsal is more effective than maintenance rehearsal. \{\{nl\}\} Emphasizes cognitive processes over storage structures. \{\{nl\}\} Supported by a range of experimental evidence. \{\{nl\}\} Influential in educational practices – encouraged meaningful learning. \{\{nl\}\}} \tn % Row Count 7 (+ 6) % Row 8 \SetRowColor{LightBackground} \mymulticolumn{1}{x{17.67cm}}{{\bf{❌ Limitations of the Model \{\{nl\}\}}}} \tn % Row Count 8 (+ 1) % Row 9 \SetRowColor{white} \mymulticolumn{1}{x{17.67cm}}{No clear definition of what counts as "depth" – it's vague and circular. \{\{nl\}\} Difficult to objectively measure levels of processing. \{\{nl\}\} May underestimate the role of memory structures (e.g., STM vs. LTM distinction). \{\{nl\}\} Doesn't explain why deep processing doesn't always lead to better recall. \{\{nl\}\}} \tn % Row Count 15 (+ 7) % Row 10 \SetRowColor{LightBackground} \mymulticolumn{1}{x{17.67cm}}{🧠 {\bf{Applications \{\{nl\}\}}}} \tn % Row Count 16 (+ 1) % Row 11 \SetRowColor{white} \mymulticolumn{1}{x{17.67cm}}{Learning techniques: Encourages elaboration, summarization, and connecting to prior knowledge. \{\{nl\}\} Useful in designing educational content for better retention. \{\{nl\}\} Applied in understanding encoding processes in memory disorders. \{\{nl\}\}} \tn % Row Count 21 (+ 5) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{17.67cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{17.67cm}}{\bf\textcolor{white}{Tulving's LTM Model}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{17.67cm}}{{\bf{📍1. Introduction}} \{\{nl\}\} Proposed by Endel Tulving in 1972 and revised in 1985. \{\{nl\}\} Argued that LTM is not a single store, but consists of distinct subsystems. \{\{nl\}\} First to clearly separate Episodic and Semantic memory; later added Procedural and Priming. \{\{nl\}\}} \tn % Row Count 6 (+ 6) % Row 1 \SetRowColor{white} \mymulticolumn{1}{x{17.67cm}}{🧠 {\bf{2. Main Components of Long-Term Memory}} \{\{nl\}\} a. Episodic Memory \{\{nl\}\} Stores personal experiences tied to a specific time and place. \{\{nl\}\} Example: Remembering your last birthday. \{\{nl\}\} Context-dependent and involves mental time travel. \{\{nl\}\} Neural basis: Hippocampus, medial temporal lobe. \{\{nl\}\} b. Semantic Memory \{\{nl\}\} Stores general knowledge, facts, concepts, and meanings. \{\{nl\}\} Example: Knowing that Paris is the capital of France. \{\{nl\}\} Not linked to personal experience or time. \{\{nl\}\} Neural basis: Temporal lobe, especially left hemisphere structures. \{\{nl\}\} c. Procedural Memory (added later) \{\{nl\}\} Memory for skills and actions; often unconscious. \{\{nl\}\} Example: Riding a bicycle, typing on a keyboard. \{\{nl\}\} Neural basis: Cerebellum, motor cortex, basal ganglia. \{\{nl\}\} d. Priming (also called Perceptual Representation System) \{\{nl\}\} Implicit memory where exposure to one stimulus influences response to another. \{\{nl\}\} Example: More likely to recognize a word you've seen recently. \{\{nl\}\} Neural basis: Neocortex, visual association areas. \{\{nl\}\}} \tn % Row Count 28 (+ 22) % Row 2 \SetRowColor{LightBackground} \mymulticolumn{1}{x{17.67cm}}{🧪 {\bf{3. Supporting Evidence}} \{\{nl\}\} KC (Tulving, 1989): Brain injury left him with no episodic memory but intact semantic memory. \{\{nl\}\} Clive Wearing: Severe amnesia; lost episodic memory but retained procedural skills (e.g., piano playing). \{\{nl\}\} Neuroimaging: PET and fMRI scans show different brain regions activate for episodic vs. semantic tasks. \{\{nl\}\}} \tn % Row Count 36 (+ 8) \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{17.67cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{17.67cm}}{\bf\textcolor{white}{Tulving's LTM Model (cont)}} \tn % Row 3 \SetRowColor{LightBackground} \mymulticolumn{1}{x{17.67cm}}{✔️ {\bf{4. Strengths of the Model}} \{\{nl\}\} Explains different types of LTM observed in brain-damaged patients. \{\{nl\}\} Supported by neuropsychological and brain imaging evidence. \{\{nl\}\} Provides a more realistic, detailed view of memory compared to older models. \{\{nl\}\} Accounts for both conscious (explicit) and unconscious (implicit) memory. \{\{nl\}\}} \tn % Row Count 8 (+ 8) % Row 4 \SetRowColor{white} \mymulticolumn{1}{x{17.67cm}}{❌ {\bf{5. Limitations of the Model}} \{\{nl\}\} Overlap between types of LTM (e.g., semantic memories often have episodic origins). \{\{nl\}\} Difficult to clearly separate memory systems experimentally. \{\{nl\}\} Not all memories fit neatly into just one category. \{\{nl\}\}} \tn % Row Count 14 (+ 6) % Row 5 \SetRowColor{LightBackground} \mymulticolumn{1}{x{17.67cm}}{🧠 {\bf{6. Applications}} \{\{nl\}\} Understanding amnesia, Alzheimer's, and other memory disorders. \{\{nl\}\} Applied in education, as episodic memory can help encode semantic content. \{\{nl\}\} Used in therapeutic approaches for trauma and skill training. \{\{nl\}\}} \tn % Row Count 20 (+ 6) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{17.67cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{17.67cm}}{\bf\textcolor{white}{Parallel Distribution Processing Model}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{17.67cm}}{{\bf{Introduction and Overview \{\{nl\}\}}}} \tn % Row Count 1 (+ 1) % Row 1 \SetRowColor{white} \mymulticolumn{1}{x{17.67cm}}{Developed in the 1980s by researchers like Rumelhart, McClelland, and the PDP Group. \{\{nl\}\} Also known as Neural Network Model or PDP (Parallel Distributed Processing) Model. \{\{nl\}\} Inspired by how neurons function in the brain. \{\{nl\}\} Emphasizes distributed, parallel processing of information across a network. \{\{nl\}\}} \tn % Row Count 8 (+ 7) % Row 2 \SetRowColor{LightBackground} \mymulticolumn{1}{x{17.67cm}}{{\bf{Key Concepts \{\{nl\}\}}}} \tn % Row Count 9 (+ 1) % Row 3 \SetRowColor{white} \mymulticolumn{1}{x{17.67cm}}{Units: Basic processing elements that simulate neurons. \{\{nl\}\} Connections: Like synapses between neurons; can be strong, weak, excitatory, or inhibitory. \{\{nl\}\} Nodes: Represent concepts, features, or word meanings. \{\{nl\}\} Activation: When a node or unit is "turned on" by incoming information. \{\{nl\}\} Spreading Activation: When activation spreads across the network to related nodes. \{\{nl\}\} Weighting: Each connection has a "weight" which affects how signals are processed. \{\{nl\}\} Learning: Occurs through adjustment of connection weights (Hebbian learning principles: "cells that fire together, wire together"). \{\{nl\}\}} \tn % Row Count 22 (+ 13) % Row 4 \SetRowColor{LightBackground} \mymulticolumn{1}{x{17.67cm}}{{\bf{🧠 How Memory Works in This Model \{\{nl\}\}}}} \tn % Row Count 23 (+ 1) % Row 5 \SetRowColor{white} \mymulticolumn{1}{x{17.67cm}}{Memory is not stored in one place, but is distributed across a network. \{\{nl\}\} Each memory is represented by a pattern of activation across multiple nodes. \{\{nl\}\} Retrieval is reconstructive – patterns of activation are recreated rather than replayed exactly. \{\{nl\}\} More overlapping patterns = more associations = easier retrieval. \{\{nl\}\} Forgetting occurs when activation patterns become weak or disrupted. \{\{nl\}\}} \tn % Row Count 32 (+ 9) \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{17.67cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{17.67cm}}{\bf\textcolor{white}{Parallel Distribution Processing Model (cont)}} \tn % Row 6 \SetRowColor{LightBackground} \mymulticolumn{1}{x{17.67cm}}{{\bf{🧪 Supporting Evidence and Applications \{\{nl\}\}}}} \tn % Row Count 2 (+ 2) % Row 7 \SetRowColor{white} \mymulticolumn{1}{x{17.67cm}}{Simulations show the model can learn language, recognize patterns, and even generalize to new inputs. \{\{nl\}\} Explains phenomena like tip-of-the-tongue, semantic priming, and graceful degradation (partial memory loss). \{\{nl\}\} Has influenced fields like AI, cognitive neuroscience, and psycholinguistics. \{\{nl\}\}} \tn % Row Count 9 (+ 7) % Row 8 \SetRowColor{LightBackground} \mymulticolumn{1}{x{17.67cm}}{{\bf{✔️ Strengths of the Model \{\{nl\}\}}}} \tn % Row Count 10 (+ 1) % Row 9 \SetRowColor{white} \mymulticolumn{1}{x{17.67cm}}{Biologically inspired – mirrors how the brain likely processes information. \{\{nl\}\} Explains how learning and memory are adaptive and flexible. \{\{nl\}\} Can account for partial recall, generalization, and error patterns in memory. \{\{nl\}\} Describes how we process meaning, not just store information. \{\{nl\}\}} \tn % Row Count 17 (+ 7) % Row 10 \SetRowColor{LightBackground} \mymulticolumn{1}{x{17.67cm}}{{\bf{❌ Limitations of the Model \{\{nl\}\}}}} \tn % Row Count 18 (+ 1) % Row 11 \SetRowColor{white} \mymulticolumn{1}{x{17.67cm}}{Often too abstract or complex to fully map onto actual brain activity. \{\{nl\}\} Difficult to test and falsify experimentally. \{\{nl\}\} Sometimes fails to distinguish between different memory types (e.g., episodic vs. semantic). \{\{nl\}\} May oversimplify cognitive functions by focusing only on activation patterns. \{\{nl\}\}} \tn % Row Count 25 (+ 7) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{17.67cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{17.67cm}}{\bf\textcolor{white}{Encoding in Memory}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{17.67cm}}{{\bf{📌 What is Encoding?}}} \tn % Row Count 1 (+ 1) % Row 1 \SetRowColor{white} \mymulticolumn{1}{x{17.67cm}}{Encoding refers to the initial process of transforming sensory input into a form that can be stored in the brain. \{\{nl\}\} It is the first stage of the memory process (Encoding → Storage → Retrieval). \{\{nl\}\} Encoding determines the strength, durability, and accessibility of memory traces. \{\{nl\}\} It is not passive—how we encode influences how well we remember. \{\{nl\}\}} \tn % Row Count 9 (+ 8) % Row 2 \SetRowColor{LightBackground} \mymulticolumn{1}{x{17.67cm}}{{\bf{🧠 Types of Encoding}}} \tn % Row Count 10 (+ 1) % Row 3 \SetRowColor{white} \mymulticolumn{1}{x{17.67cm}}{Visual Encoding: Based on the appearance of stimuli (e.g., images, shapes, colors). \{\{nl\}\} Acoustic Encoding: Based on the sound of information (e.g., rhymes, rhythm, verbal repetition). \{\{nl\}\} Semantic Encoding: Based on meaning; involves elaboration and association with existing knowledge. \{\{nl\}\} Tactile Encoding: Based on physical sensations (e.g., texture). \{\{nl\}\} Olfactory and Gustatory Encoding: Rare, but potent when linked with emotional or episodic memories. \{\{nl\}\}} \tn % Row Count 20 (+ 10) % Row 4 \SetRowColor{LightBackground} \mymulticolumn{1}{x{17.67cm}}{{\bf{🔍 Levels of Processing Theory (Craik \& Lockhart, 1972)}}} \tn % Row Count 22 (+ 2) % Row 5 \SetRowColor{white} \mymulticolumn{1}{x{17.67cm}}{Memory is influenced more by depth of processing than by separate memory stores. \{\{nl\}\} Shallow processing: Structural and phonemic processing leads to weak memory traces. \{\{nl\}\} Deep processing: Semantic encoding leads to stronger and more durable memory. \{\{nl\}\} Depth is enhanced by elaboration, distinctiveness, and meaning-making. \{\{nl\}\}} \tn % Row Count 29 (+ 7) % Row 6 \SetRowColor{LightBackground} \mymulticolumn{1}{x{17.67cm}}{{\bf{🧪 Key Experiments in Encoding \{\{nl\}\}}}} \tn % Row Count 30 (+ 1) \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{17.67cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{17.67cm}}{\bf\textcolor{white}{Encoding in Memory (cont)}} \tn % Row 7 \SetRowColor{LightBackground} \mymulticolumn{1}{x{17.67cm}}{Craik \& Tulving (1975): Found that words processed semantically were recalled more than those processed visually or acoustically. \{\{nl\}\} Hyde \& Jenkins (1969): Participants who judged pleasantness of words (deep processing) recalled more than those who counted letters (shallow). \{\{nl\}\} Bower et al. (1969): Hierarchical organization during encoding improves recall. \{\{nl\}\} Bransford \& Johnson (1972): Context helps encoding; participants recalled more when given meaningful context. \{\{nl\}\}} \tn % Row Count 10 (+ 10) % Row 8 \SetRowColor{white} \mymulticolumn{1}{x{17.67cm}}{{\bf{🧩 Factors Influencing Encoding \{\{nl\}\}}}} \tn % Row Count 11 (+ 1) % Row 9 \SetRowColor{LightBackground} \mymulticolumn{1}{x{17.67cm}}{Attention: Essential for effective encoding—without attention, information decays rapidly. \{\{nl\}\} Elaboration: Linking new information to prior knowledge improves encoding. \{\{nl\}\} Distinctiveness: Unusual or unique items are encoded more deeply. \{\{nl\}\} Rehearsal Type: Elaborative rehearsal (meaning-based) is superior to maintenance rehearsal (rote repetition). \{\{nl\}\} Organizational Strategies: Chunking, imagery, and mnemonics enhance encoding efficiency. \{\{nl\}\}} \tn % Row Count 21 (+ 10) % Row 10 \SetRowColor{white} \mymulticolumn{1}{x{17.67cm}}{{\bf{🧬 Neuroscience of Encoding \{\{nl\}\}}}} \tn % Row Count 22 (+ 1) % Row 11 \SetRowColor{LightBackground} \mymulticolumn{1}{x{17.67cm}}{Encoding is supported by the hippocampus, prefrontal cortex, and medial temporal lobes. \{\{nl\}\} Hippocampus plays a critical role in consolidating encoded information into long-term memory. \{\{nl\}\} Prefrontal cortex assists in attentional control and selecting encoding strategies. \{\{nl\}\} Neuroimaging (fMRI, PET) shows increased activity in the left hemisphere for verbal encoding, and right for visual encoding. \{\{nl\}\} Neurotransmitters like acetylcholine and glutamate are involved in encoding processes. \{\{nl\}\}} \tn % Row Count 33 (+ 11) \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{17.67cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{17.67cm}}{\bf\textcolor{white}{Encoding in Memory (cont)}} \tn % Row 12 \SetRowColor{LightBackground} \mymulticolumn{1}{x{17.67cm}}{{\bf{🧠 Encoding Specificity Principle (Tulving \& Thomson, 1973) \{\{nl\}\}}}} \tn % Row Count 2 (+ 2) % Row 13 \SetRowColor{white} \mymulticolumn{1}{x{17.67cm}}{Recall is most effective when retrieval conditions match encoding conditions. \{\{nl\}\} Context-dependent memory: Environmental cues present during encoding aid retrieval. \{\{nl\}\} State-dependent memory: Internal states (mood, drug-induced states) influence recall. \{\{nl\}\} Mood-congruent memory: We recall information consistent with our current mood. \{\{nl\}\}} \tn % Row Count 10 (+ 8) % Row 14 \SetRowColor{LightBackground} \mymulticolumn{1}{x{17.67cm}}{{\bf{✔️ Practical Applications of Encoding Research \{\{nl\}\}}}} \tn % Row Count 12 (+ 2) % Row 15 \SetRowColor{white} \mymulticolumn{1}{x{17.67cm}}{Educational psychology: Encouraging meaningful learning and elaboration improves academic performance. \{\{nl\}\} Memory rehabilitation: Techniques like chunking, visualization, and association aid memory-impaired individuals. \{\{nl\}\} Cognitive therapy: Re-encoding traumatic memories in safer, new emotional contexts (e.g., EMDR). \{\{nl\}\}} \tn % Row Count 19 (+ 7) % Row 16 \SetRowColor{LightBackground} \mymulticolumn{1}{x{17.67cm}}{{\bf{❌ Encoding Failures \{\{nl\}\}}}} \tn % Row Count 20 (+ 1) % Row 17 \SetRowColor{white} \mymulticolumn{1}{x{17.67cm}}{Encoding failure occurs when information never enters long-term memory due to lack of attention or processing. \{\{nl\}\} Common in divided attention tasks or passive learning environments. \{\{nl\}\} Forgetting is often due to ineffective encoding, not memory decay. \{\{nl\}\}} \tn % Row Count 26 (+ 6) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{17.67cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{17.67cm}}{\bf\textcolor{white}{Retrieval Processes}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{17.67cm}}{{\bf{📌 What is Retrieval? \{\{nl\}\}}}} \tn % Row Count 1 (+ 1) % Row 1 \SetRowColor{white} \mymulticolumn{1}{x{17.67cm}}{Retrieval refers to the process of accessing stored information from long-term memory. \{\{nl\}\} It is the final stage in the memory process, after encoding and storage. \{\{nl\}\} Retrieval is influenced by how the information was encoded, the type of memory, and retrieval conditions. \{\{nl\}\} Retrieval can be intentional (effortful) or spontaneous (automatic). \{\{nl\}\}} \tn % Row Count 9 (+ 8) % Row 2 \SetRowColor{LightBackground} \mymulticolumn{1}{x{17.67cm}}{{\bf{🧭 Retrieval Cues \{\{nl\}\}}}} \tn % Row Count 10 (+ 1) % Row 3 \SetRowColor{white} \mymulticolumn{1}{x{17.67cm}}{Retrieval cues are stimuli or triggers that assist in accessing stored memories. \{\{nl\}\} They can be external (environmental, verbal hints) or internal (emotional state, mental associations). \{\{nl\}\} Effective cues often involve associative links formed during encoding. \{\{nl\}\} Cue overload principle: A cue is less effective if it is linked to many items. \{\{nl\}\} Distinctive cues enhance retrieval by reducing interference. \{\{nl\}\}} \tn % Row Count 19 (+ 9) % Row 4 \SetRowColor{LightBackground} \mymulticolumn{1}{x{17.67cm}}{{\bf{🌍 Context-Dependent Retrieval \{\{nl\}\}}}} \tn % Row Count 20 (+ 1) % Row 5 \SetRowColor{white} \mymulticolumn{1}{x{17.67cm}}{Memory is better retrieved in the same context in which it was encoded. \{\{nl\}\} This includes physical surroundings, people, smells, lighting, and ambient sounds. \{\{nl\}\} Classic study: Godden \& Baddeley (1975) found divers recalled more words when encoding and retrieval occurred underwater or both on land. \{\{nl\}\} Context acts as a retrieval scaffold, facilitating access to stored traces. \{\{nl\}\}} \tn % Row Count 28 (+ 8) % Row 6 \SetRowColor{LightBackground} \mymulticolumn{1}{x{17.67cm}}{{\bf{🧠 State-Dependent Retrieval \{\{nl\}\}}}} \tn % Row Count 29 (+ 1) % Row 7 \SetRowColor{white} \mymulticolumn{1}{x{17.67cm}}{Retrieval improves when a person's internal physiological or psychological state matches their state during encoding. \{\{nl\}\} Includes effects of mood, arousal, drugs, fatigue, or stress. \{\{nl\}\} Common example: people intoxicated at encoding may recall better when intoxicated again. \{\{nl\}\} Supports the idea that internal states function like retrieval cues. \{\{nl\}\}} \tn % Row Count 37 (+ 8) \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{17.67cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{17.67cm}}{\bf\textcolor{white}{Retrieval Processes (cont)}} \tn % Row 8 \SetRowColor{LightBackground} \mymulticolumn{1}{x{17.67cm}}{{\bf{🎭 Mood-Congruent Memory \{\{nl\}\}}}} \tn % Row Count 1 (+ 1) % Row 9 \SetRowColor{white} \mymulticolumn{1}{x{17.67cm}}{We are more likely to recall memories that match our current emotional state. \{\{nl\}\} This is not about encoding state, but about bias in retrieval content. \{\{nl\}\} Depressed individuals, for example, tend to recall more negative life events. \{\{nl\}\}} \tn % Row Count 6 (+ 5) % Row 10 \SetRowColor{LightBackground} \mymulticolumn{1}{x{17.67cm}}{{\bf{🔄 Recall vs. Recognition \{\{nl\}\}}}} \tn % Row Count 7 (+ 1) % Row 11 \SetRowColor{white} \mymulticolumn{1}{x{17.67cm}}{Recall: Retrieval without direct cues. Requires reconstructing information. \{\{nl\}\} Examples: Essay tests, free recall tasks. \{\{nl\}\} Types: Free recall, serial recall, and cued recall. \{\{nl\}\} Typically more demanding than recognition. \{\{nl\}\} Recognition: Identifying previously learned information when it is presented again. \{\{nl\}\} Examples: Multiple choice questions, face recognition. \{\{nl\}\} Less effortful—relies on familiarity and retrieval matching. \{\{nl\}\} Recognition is often more accurate than recall due to cue support. \{\{nl\}\}} \tn % Row Count 18 (+ 11) % Row 12 \SetRowColor{LightBackground} \mymulticolumn{1}{x{17.67cm}}{{\bf{🧪 Key Experiments and Theories in Retrieval \{\{nl\}\}}}} \tn % Row Count 20 (+ 2) % Row 13 \SetRowColor{white} \mymulticolumn{1}{x{17.67cm}}{Tulving's Encoding Specificity Principle: Retrieval is most effective when cues match the encoding context. \{\{nl\}\} Godden \& Baddeley (1975): Environmental context effects in divers. \{\{nl\}\} Eich (1975): Demonstrated state-dependent learning using mood induction. \{\{nl\}\} Loftus (1975): Misinformation effect—shows how retrieval can be distorted by post-event information. \{\{nl\}\} Nelson (1971): Showed that forgotten items can be retrieved when original cues are reinstated. \{\{nl\}\}} \tn % Row Count 30 (+ 10) \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{17.67cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{17.67cm}}{\bf\textcolor{white}{Retrieval Processes (cont)}} \tn % Row 14 \SetRowColor{LightBackground} \mymulticolumn{1}{x{17.67cm}}{{\bf{🧬 Neurocognitive Aspects of Retrieval \{\{nl\}\}}}} \tn % Row Count 2 (+ 2) % Row 15 \SetRowColor{white} \mymulticolumn{1}{x{17.67cm}}{Hippocampus: Essential for relational memory retrieval and reactivating stored memory patterns. \{\{nl\}\} Prefrontal cortex: Involved in retrieval effort, monitoring, and decision-making during recall. \{\{nl\}\} Parietal lobes: Associated with subjective experience of remembering, like familiarity. \{\{nl\}\} Retrieval involves pattern completion: reinstating parts of the stored trace using cues. \{\{nl\}\}} \tn % Row Count 10 (+ 8) % Row 16 \SetRowColor{LightBackground} \mymulticolumn{1}{x{17.67cm}}{{\bf{🔁 Retrieval Practice (Testing Effect) \{\{nl\}\}}}} \tn % Row Count 12 (+ 2) % Row 17 \SetRowColor{white} \mymulticolumn{1}{x{17.67cm}}{Repeated retrieval strengthens memory more than passive review. \{\{nl\}\} Roediger \& Karpicke (2006): Testing enhances long-term retention better than re-studying. \{\{nl\}\} Retrieval promotes reconsolidation and deepens encoding pathways. \{\{nl\}\}} \tn % Row Count 17 (+ 5) % Row 18 \SetRowColor{LightBackground} \mymulticolumn{1}{x{17.67cm}}{{\bf{⚠️ Retrieval Failures and Blocking \{\{nl\}\}}}} \tn % Row Count 18 (+ 1) % Row 19 \SetRowColor{white} \mymulticolumn{1}{x{17.67cm}}{Retrieval failures are not always due to forgetting—can be caused by: \{\{nl\}\} Interference (retroactive/proactive), \{\{nl\}\} Cue-dependent forgetting, \{\{nl\}\} Decay of the memory trace, \{\{nl\}\} Inhibition or motivated forgetting (e.g., repression). \{\{nl\}\} Tip-of-the-Tongue (TOT) phenomenon: Partial retrieval; activation without full access. \{\{nl\}\} Blocking: Interference from competing memories (e.g., similar names). \{\{nl\}\}} \tn % Row Count 27 (+ 9) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{17.67cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{17.67cm}}{\bf\textcolor{white}{Forgetting}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{17.67cm}}{{\bf{What is Forgetting?}}} \tn % Row Count 1 (+ 1) % Row 1 \SetRowColor{white} \mymulticolumn{1}{x{17.67cm}}{orgetting refers to the inability to retrieve information previously encoded and stored in memory.\{\{nl\}\} It may occur due to weak encoding, interrupted consolidation, trace decay, retrieval failure, motivated forgetting, or errors in memory processing.\{\{nl\}\} It's not always dysfunctional—it helps cognitive efficiency by allowing us to filter irrelevant or outdated information.\{\{nl\}\}} \tn % Row Count 9 (+ 8) % Row 2 \SetRowColor{LightBackground} \mymulticolumn{1}{x{17.67cm}}{{\bf{The Seven Types of Forgetting (Schacter's "Seven Sins of Memory")}}} \tn % Row Count 11 (+ 2) % Row 3 \SetRowColor{white} \mymulticolumn{1}{x{17.67cm}}{a. Transience\{\{nl\}\} Forgetting that occurs with the passage of time.\{\{nl\}\} Memory traces become weaker or degrade if not recalled or rehearsed.\{\{nl\}\} Closely related to trace decay theory.\{\{nl\}\}} \tn % Row Count 15 (+ 4) % Row 4 \SetRowColor{LightBackground} \mymulticolumn{1}{x{17.67cm}}{b. Absent-Mindedness\{\{nl\}\} Forgetting due to a lack of attention or shallow encoding.\{\{nl\}\} Often results from distraction or divided attention at the time of encoding.\{\{nl\}\} Example: Forgetting where you placed your keys.\{\{nl\}\}} \tn % Row Count 20 (+ 5) % Row 5 \SetRowColor{white} \mymulticolumn{1}{x{17.67cm}}{c. Blocking\{\{nl\}\} Temporary inability to access stored information.\{\{nl\}\} Often manifests as the Tip-of-the-Tongue (TOT) phenomenon.\{\{nl\}\} Memory is available but inaccessible at that moment.\{\{nl\}\}} \tn % Row Count 24 (+ 4) % Row 6 \SetRowColor{LightBackground} \mymulticolumn{1}{x{17.67cm}}{d. Misattribution\{\{nl\}\} Assigning a memory to the wrong source (e.g., thinking someone else told you something).\{\{nl\}\} Can contribute to false memories and distorted recall.\{\{nl\}\}} \tn % Row Count 28 (+ 4) % Row 7 \SetRowColor{white} \mymulticolumn{1}{x{17.67cm}}{e. Suggestibility\{\{nl\}\} Incorporation of misleading information from external sources into personal recollections.\{\{nl\}\} Often observed in eyewitness testimony and memory distortion due to leading questions.\{\{nl\}\}} \tn % Row Count 33 (+ 5) \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{17.67cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{17.67cm}}{\bf\textcolor{white}{Forgetting (cont)}} \tn % Row 8 \SetRowColor{LightBackground} \mymulticolumn{1}{x{17.67cm}}{f. Bias\{\{nl\}\} Retrospective distortions caused by current beliefs, emotions, or knowledge.\{\{nl\}\} People reshape past events to better fit their present view of themselves or the world.\{\{nl\}\}} \tn % Row Count 4 (+ 4) % Row 9 \SetRowColor{white} \mymulticolumn{1}{x{17.67cm}}{g. Persistence\{\{nl\}\} Unwanted memories that intrude into consciousness.\{\{nl\}\} Often emotionally charged, and seen in PTSD or rumination.\{\{nl\}\} Contrary to typical forgetting – it's the inability to forget.\{\{nl\}\}} \tn % Row Count 9 (+ 5) % Row 10 \SetRowColor{LightBackground} \mymulticolumn{1}{x{17.67cm}}{{\bf{Trace Decay Theory\{\{nl\}\}}}} \tn % Row Count 10 (+ 1) % Row 11 \SetRowColor{white} \mymulticolumn{1}{x{17.67cm}}{Suggests that memory traces fade over time if not actively rehearsed.\{\{nl\}\} Based on the physiological decay of memory traces in the brain.\{\{nl\}\} Applies best to sensory memory and short-term memory.\{\{nl\}\} Peterson \& Peterson (1959): Demonstrated rapid STM forgetting when rehearsal was blocked.\{\{nl\}\}} \tn % Row Count 17 (+ 7) % Row 12 \SetRowColor{LightBackground} \mymulticolumn{1}{x{17.67cm}}{{\bf{Interference Theory\{\{nl\}\}}}} \tn % Row Count 18 (+ 1) % Row 13 \SetRowColor{white} \mymulticolumn{1}{x{17.67cm}}{Proposes that conflicting information disrupts memory retrieval.\{\{nl\}\} Two key types:\{\{nl\}\}} \tn % Row Count 20 (+ 2) % Row 14 \SetRowColor{LightBackground} \mymulticolumn{1}{x{17.67cm}}{Proactive Interference (PI)\{\{nl\}\} Older memories interfere with the learning or recall of new material.\{\{nl\}\} Example: Using your old PIN when trying to recall a new one.\{\{nl\}\}} \tn % Row Count 24 (+ 4) % Row 15 \SetRowColor{white} \mymulticolumn{1}{x{17.67cm}}{Retroactive Interference (RI)\{\{nl\}\} New information interferes with the retrieval of older memories.\{\{nl\}\} Example: Forgetting your old address after memorizing your current one.\{\{nl\}\} Underwood (1957): Found evidence for PI in list-learning studies.\{\{nl\}\} McGeoch \& McDonald (1931): RI is stronger when materials are similar.\{\{nl\}\}} \tn % Row Count 31 (+ 7) \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{17.67cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{17.67cm}}{\bf\textcolor{white}{Forgetting (cont)}} \tn % Row 16 \SetRowColor{LightBackground} \mymulticolumn{1}{x{17.67cm}}{{\bf{Motivated Forgetting (Freudian Theory)\{\{nl\}\}}}} \tn % Row Count 1 (+ 1) % Row 17 \SetRowColor{white} \mymulticolumn{1}{x{17.67cm}}{Originates from Freud's psychodynamic theory.\{\{nl\}\} Proposes that people forget emotionally disturbing or threatening memories to protect the ego.\{\{nl\}\} Two main forms:\{\{nl\}\} Repression: Unconscious blocking of distressing memories.\{\{nl\}\} Suppression: Conscious, intentional effort to avoid remembering.\{\{nl\}\} Anderson \& Green (2001): Experimental support via Think/No-Think paradigm.\{\{nl\}\}} \tn % Row Count 9 (+ 8) % Row 18 \SetRowColor{LightBackground} \mymulticolumn{1}{x{17.67cm}}{{\bf{Retrieval Failure (Cue-Dependent Forgetting)\{\{nl\}\}}}} \tn % Row Count 11 (+ 2) % Row 19 \SetRowColor{white} \mymulticolumn{1}{x{17.67cm}}{Memory is stored but cannot be accessed due to a lack of proper retrieval cues.\{\{nl\}\} Explained by Encoding Specificity Principle (Tulving): retrieval is most effective when context matches encoding.\{\{nl\}\} Examples: Forgetting a name until reminded by a mutual friend.\{\{nl\}\}} \tn % Row Count 17 (+ 6) % Row 20 \SetRowColor{LightBackground} \mymulticolumn{1}{x{17.67cm}}{{\bf{Additional Concepts Related to Forgetting\{\{nl\}\}}}} \tn % Row Count 19 (+ 2) % Row 21 \SetRowColor{white} \mymulticolumn{1}{x{17.67cm}}{Tip-of-the-Tongue (TOT) Phenomenon\{\{nl\}\} Partial retrieval failure – the feeling of knowing something but being unable to retrieve it.\{\{nl\}\} b. Consolidation Failure\{\{nl\}\} Forgetting due to interruption or failure during memory consolidation, often due to trauma or interference.\{\{nl\}\} c. Directed Forgetting\{\{nl\}\} Intentional forgetting due to instructions or cognitive control.\{\{nl\}\} Studied using item-method and list-method paradigms.\{\{nl\}\} d. Organic Causes of Forgetting\{\{nl\}\} Brain damage, neurodegenerative diseases (e.g., Alzheimer's, Korsakoff's syndrome), and trauma can impair memory.\{\{nl\}\} These typically affect episodic and semantic memory, but procedural memory often remains intact.\{\{nl\}\}} \tn % Row Count 34 (+ 15) \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{17.67cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{17.67cm}}{\bf\textcolor{white}{Forgetting (cont)}} \tn % Row 22 \SetRowColor{LightBackground} \mymulticolumn{1}{x{17.67cm}}{{\bf{Neurobiological Aspects of Forgetting\{\{nl\}\}}}} \tn % Row Count 1 (+ 1) % Row 23 \SetRowColor{white} \mymulticolumn{1}{x{17.67cm}}{Hippocampus: Crucial for memory consolidation; damage results in anterograde or retrograde amnesia.\{\{nl\}\} Prefrontal Cortex: Involved in retrieval, inhibition of unwanted memories, and cognitive control.\{\{nl\}\} Forgetting may also result from synaptic pruning and long-term depression (LTD) – reduction in synaptic strength.\{\{nl\}\} Neurotransmitters like glutamate, GABA, and acetylcholine influence memory encoding and stability.\{\{nl\}\}} \tn % Row Count 10 (+ 9) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \end{document}