\documentclass[10pt,a4paper]{article} % Packages \usepackage{fancyhdr} % For header and footer \usepackage{multicol} % Allows multicols in tables \usepackage{tabularx} % Intelligent column widths \usepackage{tabulary} % Used in header and footer \usepackage{hhline} % Border under tables \usepackage{graphicx} % For images \usepackage{xcolor} % For hex colours %\usepackage[utf8x]{inputenc} % For unicode character support \usepackage[T1]{fontenc} % Without this we get weird character replacements \usepackage{colortbl} % For coloured tables \usepackage{setspace} % For line height \usepackage{lastpage} % Needed for total page number \usepackage{seqsplit} % Splits long words. %\usepackage{opensans} % Can't make this work so far. Shame. Would be lovely. \usepackage[normalem]{ulem} % For underlining links % Most of the following are not required for the majority % of cheat sheets but are needed for some symbol support. \usepackage{amsmath} % Symbols \usepackage{MnSymbol} % Symbols \usepackage{wasysym} % Symbols %\usepackage[english,german,french,spanish,italian]{babel} % Languages % Document Info \author{rentasticco} \pdfinfo{ /Title (attention.pdf) /Creator (Cheatography) /Author (rentasticco) /Subject (Attention Cheat Sheet) } % Lengths and widths \addtolength{\textwidth}{6cm} \addtolength{\textheight}{-1cm} \addtolength{\hoffset}{-3cm} \addtolength{\voffset}{-2cm} \setlength{\tabcolsep}{0.2cm} % Space between columns \setlength{\headsep}{-12pt} % Reduce space between header and content \setlength{\headheight}{85pt} % If less, LaTeX automatically increases it \renewcommand{\footrulewidth}{0pt} % Remove footer line \renewcommand{\headrulewidth}{0pt} % Remove header line \renewcommand{\seqinsert}{\ifmmode\allowbreak\else\-\fi} % Hyphens in seqsplit % This two commands together give roughly % the right line height in the tables \renewcommand{\arraystretch}{1.3} \onehalfspacing % Commands \newcommand{\SetRowColor}[1]{\noalign{\gdef\RowColorName{#1}}\rowcolor{\RowColorName}} % Shortcut for row colour \newcommand{\mymulticolumn}[3]{\multicolumn{#1}{>{\columncolor{\RowColorName}}#2}{#3}} % For coloured multi-cols \newcolumntype{x}[1]{>{\raggedright}p{#1}} % New column types for ragged-right paragraph columns \newcommand{\tn}{\tabularnewline} % Required as custom column type in use % Font and Colours \definecolor{HeadBackground}{HTML}{333333} \definecolor{FootBackground}{HTML}{666666} \definecolor{TextColor}{HTML}{333333} \definecolor{DarkBackground}{HTML}{A35D02} \definecolor{LightBackground}{HTML}{F9F4EF} \renewcommand{\familydefault}{\sfdefault} \color{TextColor} % Header and Footer \pagestyle{fancy} \fancyhead{} % Set header to blank \fancyfoot{} % Set footer to blank \fancyhead[L]{ \noindent \begin{multicols}{3} \begin{tabulary}{5.8cm}{C} \SetRowColor{DarkBackground} \vspace{-7pt} {\parbox{\dimexpr\textwidth-2\fboxsep\relax}{\noindent \hspace*{-6pt}\includegraphics[width=5.8cm]{/web/www.cheatography.com/public/images/cheatography_logo.pdf}} } \end{tabulary} \columnbreak \begin{tabulary}{11cm}{L} \vspace{-2pt}\large{\bf{\textcolor{DarkBackground}{\textrm{Attention Cheat Sheet}}}} \\ \normalsize{by \textcolor{DarkBackground}{rentasticco} via \textcolor{DarkBackground}{\uline{cheatography.com/177906/cs/46128/}}} \end{tabulary} \end{multicols}} \fancyfoot[L]{ \footnotesize \noindent \begin{multicols}{3} \begin{tabulary}{5.8cm}{LL} \SetRowColor{FootBackground} \mymulticolumn{2}{p{5.377cm}}{\bf\textcolor{white}{Cheatographer}} \\ \vspace{-2pt}rentasticco \\ \uline{cheatography.com/rentasticco} \\ \end{tabulary} \vfill \columnbreak \begin{tabulary}{5.8cm}{L} \SetRowColor{FootBackground} \mymulticolumn{1}{p{5.377cm}}{\bf\textcolor{white}{Cheat Sheet}} \\ \vspace{-2pt}Published 16th April, 2025.\\ Updated 16th April, 2025.\\ Page {\thepage} of \pageref{LastPage}. \end{tabulary} \vfill \columnbreak \begin{tabulary}{5.8cm}{L} \SetRowColor{FootBackground} \mymulticolumn{1}{p{5.377cm}}{\bf\textcolor{white}{Sponsor}} \\ \SetRowColor{white} \vspace{-5pt} %\includegraphics[width=48px,height=48px]{dave.jpeg} Measure your website readability!\\ www.readability-score.com \end{tabulary} \end{multicols}} \begin{document} \raggedright \raggedcolumns % Set font size to small. Switch to any value % from this page to resize cheat sheet text: % www.emerson.emory.edu/services/latex/latex_169.html \footnotesize % Small font. \begin{multicols*}{3} \begin{tabularx}{5.377cm}{x{2.18988 cm} x{2.78712 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{5.377cm}}{\bf\textcolor{white}{Definitions}} \tn % Row 0 \SetRowColor{LightBackground} Selective Attention & Definition: Focusing on one stimulus while ignoring others. \tn % Row Count 3 (+ 3) % Row 1 \SetRowColor{white} & Example: Roger focuses on his math homework and ignores the people talking nearby. \tn % Row Count 7 (+ 4) % Row 2 \SetRowColor{LightBackground} Distraction & Definition: When an irrelevant stimulus interferes with the processing of a current task. \tn % Row Count 12 (+ 5) % Row 3 \SetRowColor{white} & Example: While playing a game on his phone (less demanding), the conversation becomes distracting \tn % Row Count 17 (+ 5) % Row 4 \SetRowColor{LightBackground} Divided Attention & Definition: Paying attention to more than one thing at once. \tn % Row Count 20 (+ 3) % Row 5 \SetRowColor{white} & Example: Roger consciously eavesdrops on the conversation while playing the game \tn % Row Count 24 (+ 4) % Row 6 \SetRowColor{LightBackground} Attentional Capture & Definition: A sudden, involuntary shift in attention caused by a salient stimulus. \tn % Row Count 28 (+ 4) % Row 7 \SetRowColor{white} & Example: A loud noise from an overturned book cart draws Roger's attention \tn % Row Count 32 (+ 4) \end{tabularx} \par\addvspace{1.3em} \vfill \columnbreak \begin{tabularx}{5.377cm}{x{2.18988 cm} x{2.78712 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{5.377cm}}{\bf\textcolor{white}{Definitions (cont)}} \tn % Row 8 \SetRowColor{LightBackground} Visual Scanning & Definition: Actively moving the eyes to search for or attend to different visual information. \tn % Row Count 5 (+ 5) % Row 9 \SetRowColor{white} & Example: Roger looks from face to face trying to identify people involved in the commotion. \tn % Row Count 10 (+ 5) % Row 10 \SetRowColor{LightBackground} {\bf{Attention}} & Attention is the mental process of selecting certain stimuli while ignoring others, allowing us to process relevant information efficiently. \tn % Row Count 17 (+ 7) % Row 11 \SetRowColor{white} & It's not a unitary concept—attention has multiple forms and underlying processes. \tn % Row Count 21 (+ 4) % Row 12 \SetRowColor{LightBackground} William James & "My experience is what I agree to attend to... It implies withdrawal from some things in order to deal effectively with others" \tn % Row Count 27 (+ 6) % Row 13 \SetRowColor{white} Broadbent's Filter Model: & We filter incoming stimuli early in processing. \tn % Row Count 30 (+ 3) \end{tabularx} \par\addvspace{1.3em} \vfill \columnbreak \begin{tabularx}{5.377cm}{x{2.18988 cm} x{2.78712 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{5.377cm}}{\bf\textcolor{white}{Definitions (cont)}} \tn % Row 14 \SetRowColor{LightBackground} Treisman's Attenuation Theory: & We don't completely block ignored stimuli; we just turn down their "volume." \tn % Row Count 4 (+ 4) % Row 15 \SetRowColor{white} Late Selection Models: & All info is processed somewhat before selection occurs. \tn % Row Count 7 (+ 3) % Row 16 \SetRowColor{LightBackground} Cocktail Party Effect: & Even in a noisy environment, we can tune in to one conversation while filtering others \tn % Row Count 11 (+ 4) \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{x{0.96117 cm} x{1.78503 cm} x{1.8308 cm} } \SetRowColor{DarkBackground} \mymulticolumn{3}{x{5.377cm}}{\bf\textcolor{white}{Types of Attention}} \tn % Row 0 \SetRowColor{LightBackground} \seqsplit{Attention} & Definition & Example \tn % Row Count 2 (+ 2) % Row 1 \SetRowColor{white} \seqsplit{Selective} \seqsplit{Attention} & Focusing on one stimulus while ignoring others. & Roger solving math problems while ignoring people talking nearby. \tn % Row Count 7 (+ 5) % Row 2 \SetRowColor{LightBackground} Divided \seqsplit{Attention} & Paying attention to multiple stimuli/tasks at the same time. & Listening in on a conversation while playing a game on the phone. \tn % Row Count 12 (+ 5) % Row 3 \SetRowColor{white} \seqsplit{Sustained} \seqsplit{Attention} & Maintaining focus on a task over an extended period of time. & Reading a textbook for an hour without getting distracted. \tn % Row Count 16 (+ 4) % Row 4 \SetRowColor{LightBackground} \seqsplit{Alternating} \seqsplit{Attention} & Shifting focus back and forth between tasks. & Checking a text message and then returning to writing an essay. \tn % Row Count 20 (+ 4) % Row 5 \SetRowColor{white} \seqsplit{Attentional} Capture & When attention is involuntarily drawn to a sudden stimulus. & A loud crash from a fallen book cart pulls Roger's attention from the conversation. \tn % Row Count 26 (+ 6) % Row 6 \SetRowColor{LightBackground} Visual \seqsplit{Attention} & Focusing on \seqsplit{objects/locations} in the visual field. & Scanning faces across a room to find someone you recognize. \tn % Row Count 30 (+ 4) \end{tabularx} \par\addvspace{1.3em} \vfill \columnbreak \begin{tabularx}{5.377cm}{x{0.96117 cm} x{1.78503 cm} x{1.8308 cm} } \SetRowColor{DarkBackground} \mymulticolumn{3}{x{5.377cm}}{\bf\textcolor{white}{Types of Attention (cont)}} \tn % Row 7 \SetRowColor{LightBackground} \seqsplit{Auditory} \seqsplit{Attention} & Focusing on specific sounds in the environment. & Tuning into one voice at a noisy party (cocktail party effect). \tn % Row Count 4 (+ 4) % Row 8 \SetRowColor{white} \seqsplit{Exogenous} \seqsplit{Attention} & Attention driven by an external stimulus (bottom-up). & A flashing light or sudden noise grabbing your attention automatically. \tn % Row Count 9 (+ 5) % Row 9 \SetRowColor{LightBackground} \seqsplit{Endogenous} \seqsplit{Attention} & Attention directed by internal goals or intentions (top-down). & Intentionally looking for your friend in a crowd. \tn % Row Count 14 (+ 5) % Row 10 \SetRowColor{white} Focused & Concentrating on a single task with high precision. & Solving a tough math problem without any background noise or interruptions. \tn % Row Count 19 (+ 5) % Row 11 \SetRowColor{LightBackground} \seqsplit{Executive} \seqsplit{Attention} & Controlling attention to manage conflict or distractions; often tied to executive functions. & Ignoring a pop-up while trying to submit an online exam. \tn % Row Count 26 (+ 7) \hhline{>{\arrayrulecolor{DarkBackground}}---} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Attention as Information Processing}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{Modern attention research began in the 1950s.} \tn % Row Count 1 (+ 1) % Row 1 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{One of the first influential models: {\bf{Broadbent's Filter Model (1958)}}.} \tn % Row Count 3 (+ 2) % Row 2 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{Based on {\bf{dichotic listening experiments}}, especially those by {\bf{Colin Cherry and Neville Moray}}.} \tn % Row Count 5 (+ 2) % Row 3 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{{\bf{{\emph{🎧 Key Background: Dichotic Listening}}}}} \tn % Row Count 6 (+ 1) % Row 4 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{Dichotic listening: Different auditory messages are presented to each ear.} \tn % Row Count 8 (+ 2) % Row 5 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{Participant is instructed to focus on one ear only (the attended ear) and shadow the message (repeat it out loud).} \tn % Row Count 11 (+ 3) % Row 6 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{💬 Findings:} \tn % Row Count 12 (+ 1) % Row 7 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{Participants could shadow the attended message easily. They could identify the gender of the voice in the unattended ear. But they couldn't recall content of the unattended message. Even a word repeated 35 times in the unattended ear went unnoticed} \tn % Row Count 18 (+ 6) % Row 8 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{{\bf{{\emph{Broadbent's Filter Model of Attention (1958)}}}}} \tn % Row Count 20 (+ 2) % Row 9 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{A theoretical model that explains how we attend to one message and filter out others.} \tn % Row Count 22 (+ 2) % Row 10 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{Stages of Processing} \tn % Row Count 23 (+ 1) % Row 11 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{{\bf{Sensory Memory}}: Holds all incoming info for a fraction of a second (like a buffer) and sends it to the filter.} \tn % Row Count 26 (+ 3) % Row 12 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{{\bf{Filter}}: Selects the attended message based on physical characteristics (e.g., pitch, tone, speed, accent). All other input is filtered out.} \tn % Row Count 29 (+ 3) % Row 13 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{{\bf{Detector}}: Analyzes the meaning of the filtered/attended message. Higher-level processing happens here.} \tn % Row Count 32 (+ 3) \end{tabularx} \par\addvspace{1.3em} \vfill \columnbreak \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Attention as Information Processing (cont)}} \tn % Row 14 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{{\bf{Short-Term Memory (STM)}}: Receives output from the detector. Holds info for 10–15 seconds, and can pass it on to Long-Term Memory (LTM).} \tn % Row Count 3 (+ 3) % Row 15 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{💡 Key Characteristics of Broadbent's Model} \tn % Row Count 4 (+ 1) % Row 16 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{Early selection model: Filtering happens before meaning is processed.} \tn % Row Count 6 (+ 2) % Row 17 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{Only the attended input reaches meaningful analysis; the rest is completely blocked.} \tn % Row Count 8 (+ 2) % Row 18 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{Very structured and linear model of attention.} \tn % Row Count 9 (+ 1) % Row 19 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{📚 Why This Model Matters} \tn % Row Count 10 (+ 1) % Row 20 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{Introduced the "flow diagram" approach to cognitive psychology.} \tn % Row Count 12 (+ 2) % Row 21 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{Foundation for future attention models like Treisman's attenuation theory and Deutsch \& Deutsch's late selection model.} \tn % Row Count 15 (+ 3) % Row 22 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{Helps explain selective attention and why we miss information we're not focusing on.} \tn % Row Count 17 (+ 2) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{x{1.44333 cm} x{3.53367 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{5.377cm}}{\bf\textcolor{white}{Spotlight Model of Attention}} \tn % Row 0 \SetRowColor{LightBackground} Definition & Proposed by Michael Posner (1980). \{\{nl\}\} Describes visual attention as functioning like a spotlight beam. \{\{nl\}\} We can mentally "illuminate" a region in our visual field to process information more efficiently—even without moving our eyes. \tn % Row Count 9 (+ 9) % Row 1 \SetRowColor{white} \mymulticolumn{2}{x{5.377cm}}{Types of Attention in the Spotlight Model} \tn % Row Count 10 (+ 1) % Row 2 \SetRowColor{LightBackground} Type & Description \tn % Row Count 11 (+ 1) % Row 3 \SetRowColor{white} Overt Attention & Attention where the eyes move to focus on an object or location. \tn % Row Count 14 (+ 3) % Row 4 \SetRowColor{LightBackground} Covert Attention & Attention is shifted mentally without moving the eyes (e.g., eavesdropping or "looking without looking"). \tn % Row Count 18 (+ 4) % Row 5 \SetRowColor{white} \mymulticolumn{2}{x{5.377cm}}{Key Features of the Model} \tn % Row Count 19 (+ 1) % Row 6 \SetRowColor{LightBackground} \seqsplit{Enhancement:} & Things inside the spotlight are processed faster and more accurately. \tn % Row Count 22 (+ 3) % Row 7 \SetRowColor{white} Limited scope: & Only a small area is enhanced at any one time—like a narrow beam. \tn % Row Count 25 (+ 3) % Row 8 \SetRowColor{LightBackground} Shiftable: & The spotlight can be moved voluntarily or automatically to different parts of the visual field. \tn % Row Count 29 (+ 4) % Row 9 \SetRowColor{white} Precedes action: & Often, attention shifts before eye or body movements occur. \tn % Row Count 32 (+ 3) \end{tabularx} \par\addvspace{1.3em} \vfill \columnbreak \begin{tabularx}{5.377cm}{x{1.44333 cm} x{3.53367 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{5.377cm}}{\bf\textcolor{white}{Spotlight Model of Attention (cont)}} \tn % Row 10 \SetRowColor{LightBackground} \mymulticolumn{2}{x{5.377cm}}{Key Experiment: Posner Cueing Task (1980)} \tn % Row Count 1 (+ 1) % Row 11 \SetRowColor{white} Goal: & To study how attention shifts even without eye movement (covert attention). \tn % Row Count 4 (+ 3) % Row 12 \SetRowColor{LightBackground} Procedure: & Participants fixate at the center of a screen. \{\{nl\}\} A cue (arrow or flash) indicates where a target is likely to appear. \{\{nl\}\} After a brief delay, the target appears either where the cue pointed (valid) or in another location (invalid). \tn % Row Count 13 (+ 9) % Row 13 \SetRowColor{white} Findings: & Faster reaction times for validly cued locations. \{\{nl\}\} Slower responses for invalid cues. \tn % Row Count 17 (+ 4) % Row 14 \SetRowColor{LightBackground} \seqsplit{Conclusion:} & Attention enhances processing even without eye movement—supporting the spotlight idea. \tn % Row Count 21 (+ 4) % Row 15 \SetRowColor{white} \mymulticolumn{2}{x{5.377cm}}{Bottom-Up vs Top-Down Spotlight Shifts} \tn % Row Count 22 (+ 1) % Row 16 \SetRowColor{LightBackground} Type of Shift & Triggered By \tn % Row Count 24 (+ 2) % Row 17 \SetRowColor{white} Bottom-Up & Stimulus-driven (salient color, motion, etc.) \{\{nl\}\} A bright light grabs your attention. \tn % Row Count 28 (+ 4) % Row 18 \SetRowColor{LightBackground} Top-Down & Goal-directed or expectation-based \{\{nl\}\} You search for your friend in a crowd. \tn % Row Count 31 (+ 3) \end{tabularx} \par\addvspace{1.3em} \vfill \columnbreak \begin{tabularx}{5.377cm}{x{1.44333 cm} x{3.53367 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{5.377cm}}{\bf\textcolor{white}{Spotlight Model of Attention (cont)}} \tn % Row 19 \SetRowColor{LightBackground} \seqsplit{Applications} & Driving: Anticipating where a car might come from. \{\{nl\}\} Gaming: Rapid shifts of covert attention to track enemies off-screen. \{\{nl\}\} Sports: A player focusing attention on multiple elements without shifting gaze. \tn % Row Count 8 (+ 8) \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Feature Integration Theory}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{Proposed by Anne Treisman (1980). \{\{nl\}\} Explains how we perceive objects as unified wholes rather than separate features.} \tn % Row Count 3 (+ 3) % Row 1 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{Core Idea \{\{nl\}\} Perception happens in two stages:} \tn % Row Count 4 (+ 1) % Row 2 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{Stage 1: Preattentive: Automatic, fast, parallel processing of basic features (e.g., color, shape, size, orientation). Happens without attention.} \tn % Row Count 7 (+ 3) % Row 3 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{Stage 2: Focused Attention: Attention is used to bind features together into a coherent object. This stage is slower and serial (one item at a time).} \tn % Row Count 10 (+ 3) % Row 4 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{Key Experiments: \{\{nl\}\} Treisman \& Gelade (1980): \{\{nl\}\} Participants searched for a target (e.g., red "O") among distractors. Feature search: target differed by one feature—fast \& automatic. \{\{nl\}\} Conjunction search: target shared features with distractors—slower, needs attention.} \tn % Row Count 16 (+ 6) % Row 5 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{Key Concepts: \{\{nl\}\} Feature Search: One distinct feature; pops out; parallel processing. \{\{nl\}\} Conjunction Search: Multiple shared features; requires focused attention; serial. \{\{nl\}\} Illusory Conjunctions: Errors where features from different objects are incorrectly combined—happens when attention is limited.} \tn % Row Count 23 (+ 7) % Row 6 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{Why It Matters \{\{nl\}\} Explains how we make sense of complex visual scenes. \{\{nl\}\} Supports attentional bottleneck theory—limited capacity for integration. \{\{nl\}\} Useful in fields like UI design, security scanning, and understanding ADHD.} \tn % Row Count 28 (+ 5) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Modified Early Selection Models of Attention}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{{\bf{📌 Broadbent's Original Model Recap (1958)}}} \tn % Row Count 1 (+ 1) % Row 1 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{Type: Early Selection Model} \tn % Row Count 2 (+ 1) % Row 2 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{Filter based on: Physical characteristics only (e.g., pitch, speed).} \tn % Row Count 4 (+ 2) % Row 3 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{Unattended info: Fully filtered out before reaching meaning analysis.} \tn % Row Count 6 (+ 2) % Row 4 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{Problem: Couldn't explain how some unattended info (like your name) gets noticed.} \tn % Row Count 8 (+ 2) % Row 5 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{{\bf{📌 Neville Moray's Findings (1959) – Challenge to Broadbent}}} \tn % Row Count 10 (+ 2) % Row 6 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{Experiment: Dichotic listening + shadowing task.} \tn % Row Count 11 (+ 1) % Row 7 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{Result: 1/3 of participants noticed their own name in the unattended ear.} \tn % Row Count 13 (+ 2) % Row 8 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{Implication: Unattended info can be processed for meaning, not just physical features.} \tn % Row Count 15 (+ 2) % Row 9 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{Real-world parallel: Cocktail party effect (hearing your name across a noisy room).} \tn % Row Count 17 (+ 2) % Row 10 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{{\bf{📌 "Dear Aunt Jane" Experiment (Gray \& Wedderburn, 1960)}}} \tn % Row Count 19 (+ 2) % Row 11 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{Set-up: Mixed message split across ears:} \tn % Row Count 20 (+ 1) % Row 12 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{Attended ear: "Dear 7 Jane"} \tn % Row Count 21 (+ 1) % Row 13 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{Unattended ear: "9 Aunt 6"} \tn % Row Count 22 (+ 1) % Row 14 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{Result: Participants reported "Dear Aunt Jane".} \tn % Row Count 24 (+ 2) % Row 15 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{Conclusion: They switched attention based on meaning (semantic processing).} \tn % Row Count 26 (+ 2) % Row 16 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{This shows: Use of top-down processing (expectations, context influence attention).} \tn % Row Count 28 (+ 2) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{x{1.41887 cm} x{1.3731 cm} x{1.78503 cm} } \SetRowColor{DarkBackground} \mymulticolumn{3}{x{5.377cm}}{\bf\textcolor{white}{Broadbent vs Treisman Model}} \tn % Row 0 \SetRowColor{LightBackground} Feature & Broadbent (1958) & Treisman (1964) \tn % Row Count 2 (+ 2) % Row 1 \SetRowColor{white} Filter type & Rigid, \seqsplit{all-or-nothing} & Flexible attenuator \tn % Row Count 4 (+ 2) % Row 2 \SetRowColor{LightBackground} Unattended info & Completely blocked & Weakened but still analyzed \tn % Row Count 6 (+ 2) % Row 3 \SetRowColor{white} Message selection & Based only on physical traits & Based on physical, language \& meaning \tn % Row Count 9 (+ 3) % Row 4 \SetRowColor{LightBackground} Explains cocktail party effect & ❌ No & ✅ Yes \tn % Row Count 12 (+ 3) % Row 5 \SetRowColor{white} Top-down influence & ❌ No & ✅ Yes (semantic analysis possible) \tn % Row Count 15 (+ 3) \hhline{>{\arrayrulecolor{DarkBackground}}---} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Lavie's Load Theory of Attention}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{Lavie proposed that attention and the ability to filter out distractions depend on two main factors:} \tn % Row Count 2 (+ 2) % Row 1 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{🧠 1. Processing Capacity: \{\{nl\}\} This refers to the total amount of cognitive resources a person can use at one time. \{\{nl\}\} Everyone has limited processing capacity—our brain can only handle so much information at once. \{\{nl\}\} When too many stimuli compete for attention, some are inevitably ignored.} \tn % Row Count 9 (+ 7) % Row 2 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{🌀 2. Perceptual Load: \{\{nl\}\} This refers to how demanding a task is on our cognitive system. \{\{nl\}\} Low-load tasks: Simple or well-practiced tasks (e.g., identifying a letter among all Os) \{\{nl\}\} Use less cognitive capacity \{\{nl\}\} Leave spare attention to process other (even irrelevant) stimuli \{\{nl\}\} High-load tasks: Complex or unfamiliar tasks (e.g., identifying a letter among a mix of different letters) \{\{nl\}\} Use more cognitive capacity \{\{nl\}\} Leave no spare attention, so irrelevant stimuli are filtered out \{\{nl\}\} 🔁 Interaction: The more demanding the task (high load), the less likely irrelevant information will be processed.} \tn % Row Count 22 (+ 13) % Row 3 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{🔬 Experimental Support – Forster \& Lavie (2008) \{\{nl\}\} 🧪 Task: Visual search for a target letter (X or N) \{\{nl\}\} Easy condition: Target surrounded by identical letters (e.g., all "o"s) → low load \{\{nl\}\} Hard condition: Target surrounded by a mix of different letters → high load} \tn % Row Count 28 (+ 6) % Row 4 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{🔄 Manipulation: A distractor, like a cartoon character, appears briefly} \tn % Row Count 30 (+ 2) \end{tabularx} \par\addvspace{1.3em} \vfill \columnbreak \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Lavie's Load Theory of Attention (cont)}} \tn % Row 5 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{Findings: \{\{nl\}\} In low-load tasks, the distractor slows down reaction time. \{\{nl\}\} In high-load tasks, distractor has little or no effect. \{\{nl\}\} Why? \{\{nl\}\} Because low-load tasks don't exhaust processing capacity, there's leftover attention that "spills over" to irrelevant stimuli.} \tn % Row Count 6 (+ 6) % Row 6 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{🧪{\bf{The Stroop Effect}} – A Special Case \{\{nl\}\} Described by J.R. Stroop (1935)} \tn % Row Count 8 (+ 2) % Row 7 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{Task: Name the color of the ink a word is printed in \{\{nl\}\} Easy: Shapes or colored patches → simple color-naming \{\{nl\}\} Hard: Words printed in incongruent ink colors (e.g., "RED" printed in blue ink)} \tn % Row Count 13 (+ 5) % Row 8 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{Why the Stroop Effect Occurs: \{\{nl\}\} Reading is a highly automatic process. \{\{nl\}\} The meaning of the word (e.g., "RED") competes with the goal (saying the ink color "blue"). \{\{nl\}\} Even when we try to ignore the word, it's processed automatically, causing interference.} \tn % Row Count 19 (+ 6) % Row 9 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{🧠 Key Point: Even in high-load tasks, well-practiced or highly salient distractions (like reading words) can still interfere.} \tn % Row Count 22 (+ 3) % Row 10 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{🧠 Everyday Application: \{\{nl\}\} 🧠 Everyday Application \{\{nl\}\} Playing an easy phone game → get distracted by people talking nearby. \{\{nl\}\} But: a sudden fire alarm or someone saying your name grabs your attention regardless of the task.} \tn % Row Count 27 (+ 5) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Kahneman's Capacity Model of Attention}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{Proposed by Daniel Kahneman (1973) \{\{nl\}\} Describes attention as a limited resource—like mental energy. \{\{nl\}\} We can perform multiple tasks only if total demand doesn't exceed capacity.} \tn % Row Count 4 (+ 4) % Row 1 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{Key Features of the Model} \tn % Row Count 5 (+ 1) % Row 2 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{Limited Capacity: There's only so much cognitive "fuel" or mental effort available.} \tn % Row Count 7 (+ 2) % Row 3 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{Effort: Attention is linked to how much effort a task requires.} \tn % Row Count 9 (+ 2) % Row 4 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{Allocation Policy: Attention is distributed based on factors like arousal, intentions, and task demands.} \tn % Row Count 12 (+ 3) % Row 5 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{Arousal: Higher arousal increases available capacity up to a point (Yerkes-Dodson Law).} \tn % Row Count 14 (+ 2) % Row 6 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{Automatic vs. Controlled: Automatic tasks use less attention; controlled tasks use more} \tn % Row Count 16 (+ 2) % Row 7 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{Allocation of Attention Depends On:} \tn % Row Count 17 (+ 1) % Row 8 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{nduring Dispositions: Involuntary attention (e.g., loud noises, your name being called)} \tn % Row Count 19 (+ 2) % Row 9 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{Momentary Intentions: What you're currently trying to do (e.g., studying, driving)} \tn % Row Count 21 (+ 2) % Row 10 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{Evaluation of Demands: System judges how much effort is needed per task and allocates attention accordingly} \tn % Row Count 24 (+ 3) % Row 11 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{Why It's Important} \tn % Row Count 25 (+ 1) % Row 12 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{Highlights how mental effort is limited and how tasks compete for attention. \{\{nl\}\} Helps explain multitasking, mental fatigue, and task prioritization. \{\{nl\}\} Applied in areas like cognitive load theory, human factors, and ergonomics.} \tn % Row Count 30 (+ 5) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Treisman's Attenuation Model of Attention (1964)}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{Type: Early Selection Model (but more flexible than Broadbent's)} \tn % Row Count 2 (+ 2) % Row 1 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{Also called: Leaky Filter Model} \tn % Row Count 3 (+ 1) % Row 2 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{Goal: To explain how some unattended information (like hearing your name) still reaches awareness—even when attention is directed elsewhere.} \tn % Row Count 6 (+ 3) % Row 3 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{{\bf{🎯 Why Treisman Proposed This Model}}} \tn % Row Count 7 (+ 1) % Row 4 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{Broadbent's Model said unattended info is completely blocked after physical filtering.} \tn % Row Count 9 (+ 2) % Row 5 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{But experiments (e.g., Moray's) showed people sometimes hear their name or switch attention based on meaning.} \tn % Row Count 12 (+ 3) % Row 6 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{Treisman suggested that unattended info isn't fully blocked, just weakened.} \tn % Row Count 14 (+ 2) % Row 7 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{{\bf{🔄 How Treisman's Model Works – Step-by-Step}}} \tn % Row Count 16 (+ 2) % Row 8 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{🧱1. Attenuator (Instead of a Filter)} \tn % Row Count 17 (+ 1) % Row 9 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{Analyzes input on 3 levels:} \tn % Row Count 18 (+ 1) % Row 10 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{Physical characteristics (pitch, speed, tone), Language (grouping into words/syllables), Meaning (semantics, logical flow)} \tn % Row Count 21 (+ 3) % Row 11 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{Selection is based on what's needed:} \tn % Row Count 22 (+ 1) % Row 12 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{If physical differences are enough (e.g., male vs female voice), attention uses that.} \tn % Row Count 24 (+ 2) % Row 13 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{If physical cues aren't enough, the system uses meaning to separate messages.} \tn % Row Count 26 (+ 2) % Row 14 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{✅ Attended message → passes through at full strength} \tn % Row Count 28 (+ 2) % Row 15 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{🔉 Unattended messages → are attenuated (weakened), but not completely filtered out.} \tn % Row Count 30 (+ 2) \end{tabularx} \par\addvspace{1.3em} \vfill \columnbreak \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Treisman's Attenuation Model of Attention (1964) (cont)}} \tn % Row 16 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{📖2. Dictionary Unit} \tn % Row Count 1 (+ 1) % Row 17 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{Contains stored words and meanings (in long-term memory).} \tn % Row Count 3 (+ 2) % Row 18 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{Each word has a "threshold":} \tn % Row Count 4 (+ 1) % Row 19 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{🔽 Low threshold: needs little input to be activated (e.g., your name, "fire")} \tn % Row Count 6 (+ 2) % Row 20 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{🔼 High threshold: needs stronger signal (e.g., uncommon or unimportant words)} \tn % Row Count 8 (+ 2) % Row 21 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{Even a weak signal from the attenuated stream can activate low-threshold words.} \tn % Row Count 10 (+ 2) % Row 22 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{{\bf{Real-World Example}}} \tn % Row Count 11 (+ 1) % Row 23 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{You're at a party, focused on a friend's story (attended message). Suddenly you hear your name from a nearby conversation (unattended message). ➡ According to Treisman: Your name had a low threshold and got through the attenuator, activating your attention.} \tn % Row Count 17 (+ 6) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Late Selection Model of Attention}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{Late selection models propose that all incoming information is processed to the level of meaning, and only after this full processing is a message selected for conscious awareness or response.} \tn % Row Count 4 (+ 4) % Row 1 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{💡 Core Idea: Selection doesn't happen at the sensory or physical level (as in early models), but after semantic processing.} \tn % Row Count 7 (+ 3) % Row 2 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{{\bf{🔬 MacKay's (1973) Experiment – Key Evidence}}} \tn % Row Count 9 (+ 2) % Row 3 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{Setup} \tn % Row Count 10 (+ 1) % Row 4 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{Participants were asked to shadow (repeat aloud) sentences in one ear (attended channel).} \tn % Row Count 12 (+ 2) % Row 5 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{Example attended sentence:} \tn % Row Count 13 (+ 1) % Row 6 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{"They were throwing stones at the bank." (Ambiguous: "bank" could mean riverbank or financial bank)} \tn % Row Count 16 (+ 3) % Row 7 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{Simultaneously, a biasing word was presented in the unattended ear: ➤ "money" or "river"} \tn % Row Count 18 (+ 2) % Row 8 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{Results} \tn % Row Count 19 (+ 1) % Row 9 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{Later, participants were asked to choose which sentence matched the one they had heard:} \tn % Row Count 21 (+ 2) % Row 10 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{"They threw stones at the side of the river"} \tn % Row Count 22 (+ 1) % Row 11 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{"They threw stones at the savings and loan association"} \tn % Row Count 24 (+ 2) % Row 12 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{Choice reflected the meaning of the biasing word from the unattended ear: \{\{nl\}\} Heard "money" → chose the bank = financial institution \{\{nl\}\} Heard "river" → chose the bank = riverbank} \tn % Row Count 28 (+ 4) % Row 13 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{Participants were unaware of the biasing words.} \tn % Row Count 29 (+ 1) % Row 14 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{📍Conclusion: \{\{nl\}\} Even unattended input was processed semantically (for meaning). \{\{nl\}\} Attention occurs after meaning is processed—thus, late selection.} \tn % Row Count 33 (+ 4) \end{tabularx} \par\addvspace{1.3em} \vfill \columnbreak \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Late Selection Model of Attention (cont)}} \tn % Row 15 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{🧱 Foundational Theorists \{\{nl\}\} {\bf{Deutsch \& Deutsch (1963)}}: Proposed that all stimuli are fully analyzed for meaning, but only one response is made. \{\{nl\}\} {\bf{Norman (1968)}}: Added the idea of relevance or importance boosting some inputs into awareness.} \tn % Row Count 6 (+ 6) % Row 16 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{🧠 Implications of MacKay's Findings: \{\{nl\}\} Our brain processes more than we're consciously aware of. \{\{nl\}\} Unattended information can influence decisions, judgments, and behaviors. \{\{nl\}\} Challenges the assumption that attention is necessary for understanding.} \tn % Row Count 12 (+ 6) % Row 17 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{🔄 Shifting Perspectives: Early vs Late Depends on the Context \{\{nl\}\} There's no single answer to whether attention is early or late. \{\{nl\}\} It depends on: \{\{nl\}\} 🧠 Cognitive resources available \{\{nl\}\} 🎯 Task difficulty \{\{nl\}\} 🎧 Nature of distracting stimuli} \tn % Row Count 18 (+ 6) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{x{2.18988 cm} x{2.78712 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{5.377cm}}{\bf\textcolor{white}{Inattentional Blindness\&Change Blindness}} \tn % Row 0 \SetRowColor{LightBackground} {\bf{Inattentional Blindness (IB)}} & A failure to notice a fully visible but unexpected object because attention is engaged elsewhere. \{\{nl\}\} Occurs when attention is focused on a specific task or object, so other stimuli go unnoticed. \tn % Row Count 9 (+ 9) % Row 1 \SetRowColor{white} Famous Study & Simons \& Chabris (1999) – The "Gorilla" Experiment Task: Count basketball passes. An actor in a gorilla suit walks through the scene. Many participants don't notice the gorilla. Shows how focused attention=blindness to the unexpected. \tn % Row Count 21 (+ 12) % Row 2 \SetRowColor{LightBackground} Key Points & Caused by selective attention. \{\{nl\}\} Object is right in front of you, but you miss it. \{\{nl\}\} Not due to visual problems—it's cognitive. \tn % Row Count 28 (+ 7) % Row 3 \SetRowColor{white} Real-life Examples: & Not noticing a cyclist while texting and walking. \{\{nl\}\} Missing a pedestrian while driving and checking GPS. \tn % Row Count 33 (+ 5) \end{tabularx} \par\addvspace{1.3em} \vfill \columnbreak \begin{tabularx}{5.377cm}{x{2.18988 cm} x{2.78712 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{5.377cm}}{\bf\textcolor{white}{Inattentional Blindness\&Change Blindness (cont)}} \tn % Row 4 \SetRowColor{LightBackground} {\bf{Change Blindness (CB)}} & A failure to notice changes in a visual scene, especially when changes happen during a visual disruption (e.g., blink, cut, saccade).\{\{nl\}\} Even large changes can go unnoticed without focused comparison. \tn % Row Count 10 (+ 10) % Row 5 \SetRowColor{white} Famous Study & Simons \& Levin (1998) – Door Study A man asks for directions. While distracted, he's replaced by a different person. Many people don't notice the swap. Shows how we don't store detailed representations of scenes. \tn % Row Count 21 (+ 11) % Row 6 \SetRowColor{LightBackground} Key Points & We don't compare pre- and post-change images effectively. \{\{nl\}\} Visual memory is limited. \{\{nl\}\} Depends on attention to detail and continuity. \tn % Row Count 28 (+ 7) \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} % That's all folks \end{multicols*} \end{document}